News

NOAA and Duke University Examine UAS-based Approaches for Coastal Wetland Monitoring

Article and Figures Provided By: Jenny Davis (NOS/NCCOS)

Kenneth Vierra 0 2665 Article rating: 5.0
Project team: NOAA National Centers for Coastal Ocean Science (NCCOS), Duke University Marine Robotics Laboratory and Remote Sensing Laboratory, North Carolina National Estuarine Research Reserve (NERR) and North Inlet-Winyah Bay NERR.

The core mission of NOAA’s National Ocean Service (NOS) includes stewardship of sensitive coastal habitats like those of the National Estuarine Research Reserve System (NERRS), a collection of 29 sites nationwide where NOS and States partner to promote research, education, and preservation of estuarine ecosystems. Unmanned Aerial Systems (UAS) can improve tidal wetland monitoring by providing high spatial resolution and coverage, with customizable sensors, at user-defined times.

This NOS National Centers for Coastal Ocean Science (NCCOS) research project, supported by the NOAA Uncrewed Systems Research Transition Office (UxSRTO), develops methods for the incorporation of Uncrewed Aircraft Systems (UAS) to expand routine wetland monitoring programs like those conducted by the National Estuarine Research Reserve System (NERRS).

sUAS Bathymetric Mapping for Featureless Bottom Topography Using Naturally Occurring Structure Light

Article and Figures Provided By: Tim Battista (NOS/NCCOS)

Kenneth Vierra 0 6954 Article rating: No rating
Unmanned aircraft systems (UAS) with Flash Structure from Motion (SfM) capabilities are of great interest as a supplement to existing technologies for marine debris detection, reef restoration, and ship-grounding impacts. Coastal storms and geo-hazards, including hurricanes, nor’easters and tsunamis, can deposit marine debris over vast areas, threatening marine ecosystems and navigation safety. Identification and geolocation of the debris is necessary to direct removal efforts, but can be a challenging and expensive task. These events can also cause significant damage to coral reef communities and even dislodge corals. Restoration triage to “replant” the damaged corals is time critical. Additionally, ship-grounding incidents caused by coastal storms require accurate and rapid information to conduct damage assessment and recovery efforts. The available geospatial information collected after Hurricanes Maria and Irma, which heavily impacted the U.S. Caribbean and beyond, clearly indicate the limitations of current coastal intelligence abilities to addressing disaster impacts in the littoral zone.

Rapid Detection of Harmful Algal Blooms (HABs) in Waters Nearshore Using sUAS

Article and Figure Provided by: Rick Stumpf (NOS)

Kenneth Vierra 0 3052 Article rating: No rating
Several algal blooms around the U.S. produce biotoxins that pose significant risks to human health and marine life.  In recent years, these harmful algal blooms (HABs) have caused unprecedented impacts on coastal communities and the tourism, recreation and fishing businesses that support them. In Florida, for example, a recent (2017-2018) “red tide” lasted more than a year and ultimately impacted most of the Florida coast line, creating devastating impacts for fishermen, tourism, and local (beachside) businesses.

Using sUAS (small Unmanned Aircraft Systems) deployed with HAB sensors, we are working to develop and demonstrate a rapid, cost-effective response capability in order to more quickly and accurately know the location of bloom patches.

Drone Training for NOAA Shipboard Operation

ARTICLE AND FIGURES PROVIDED BY: CAPT Brian Taggart, NOAA (ret) NOAA Affiliate - Earth Resources Technology NOS/NGS/OCS

Kenneth Vierra 0 3135 Article rating: No rating

The National Geodetic Survey Remote Sensing Division and Office of Coast survey, recently trained seven NOAA ship officers and Navigation Response Team members on drone operations at the NOAA Marine Operations Center in Newport, OR. The successful two-day training included classroom instruction and hands-on flights focused on vessel-based research and mapping missions.

Forecast for Harmful Algal Blooms in Lake Erie 2019

ARTICLE PROVIDED BY DR. RICHARD STUMPF AND INFORMATION DERIVED FROM NOAA PRESS RELEASE (PUBLISHED JULY 11, 2019)

Kenneth Vierra 0 2782 Article rating: No rating

The UAS Program Office is supporting Dr. Stumpf, (NOAA/National Centers for Coastal Ocean Science (NCCOS), on a project where the goal is to use sUAS (small Unmanned Aircraft Systems) to deploy harmful algal bloom (HAB) sensors and to develop and demonstrate a rapid, cost-effective response capability in order to more quickly and accurately know the location of bloom patches. Advancing this real-time detection capability would enable states (especially Florida) and counties to more effectively deploy and focus their limited sampling resources. Furthermore, this capability would enhance NOAA’s HAB forecasting capability so as to be able to provide improved warnings to the public, and therein increase public safety and reduce economic impact. This capability, once demonstrated, will be transitioned to states for integration into their HAB monitoring programs. Improved HAB forecasting is identified as an agency priority in the NOAA Next Generation Strategic Plan Objective - Improved coastal water quality supporting human health and coastal ecosystem services and as a Line Office mission goal in NOS Priorities Roadmap, under “Threats to human health and safety from ecological hazards”.

On July 11, 2019 Dr. Richard Stumpf attended a Harmful Algal Bloom (HAB) Workshop (“Forecast for Harmful Algal Blooms in Lake Erie 2019”) hosted by Ohio Sea Grant & Stone Lab. At the workshop, he presented the seasonal forecast for the HAB in western Lake Erie, developed by NOAA and its research partners.  Western Lake Erie will experience a significant harmful algal bloom (HAB) this summer, expected to measure 7.5 on the severity index, but could range between 6 and 9.  An index above 5 indicates blooms having greater impact. The severity index is based on bloom's biomass – the amount of algae – over a sustained period. The largest blooms occurred in 2011, with a severity index of 10, and 2015, at 10.5. Last year’s bloom had a severity index of 3.6, while 2017's was 8.0.

Lake Erie blooms consist of cyanobacteria, also called blue-green algae that are capable of producing the liver toxin microcystin that poses a risk to human and wildlife health. Such blooms may result in higher costs for cities and local governments that need to treat drinking water, prevent people from enjoying fishing, swimming, boating and visiting the shoreline, and harm the region’s vital summer tourism economy. These effects will vary in location and severity due to winds that may concentrate or dissipate the bloom.

“Communities along Lake Erie rely upon clean, healthy water to support their community’s well-being and economic livelihoods,” said Nicole LeBoeuf, acting director of NOAA’s National Ocean Service. “This forecast provides timely and trusted science-based information to water managers and public health officials so they can better anticipate blooms, mitigate impacts and reduce future outbreaks.”

This year, the lake temperature has remained relatively cool due to the higher-than-average rainfall in the region, so the bloom is not expected to start until late July when the water temperature reaches 65 to 70 degrees F. This contrasts with 2018, when exceptionally warm weather at the beginning of June caused an early start. Calm winds in July, especially in western Lake Erie, tend to allow the algal toxins t

RSS
12