NOAA Completes FVR-55 Shipboard Launch/Recovery Operations to Measure Atmospheric Aerosols and Fluxes needed to Improve Climate Model Simulations

Article and Figures Provided By: Kenneth Vierra (Science Technology Corporation/UxS Research Transition Office), Patricia Quinn (NOAA/PMEL), Janet Intrieri (NOAA/PSL)

Kenneth Vierra 0 7892 Article rating: No rating

During the month of March 2022, the NOAA Pacific Marine Environmental Laboratory (PMEL) and Physical Sciences (PSL) Laboratories used a newly developed uncrewed aircraft system (UAS) to better understand the chemical and physical characteristics of the atmosphere. The suite of sensors used in these demonstrations will improve climate and weather models by providing unique information about the atmosphere.

In partnership with L3Harris Technologies, an American technology company, NOAA has used the newly developed FVR-55 (Fixed Wing Vertical Takeoff and Landing Rotator) UAS to conduct shipboard launch and recovery operations for collecting atmospheric data with the NOAA “Clear Sky,” “Cloudy Sky,” and “miniFlux'' scientific payloads. Development of this innovative technology was initially funded through a NOAA Phase I Small Business Innovation Research (SBIR) award in 2016, followed by a Phase II SBIR award and follow-on contract for the continued development of the UAS. Continued development and operations were funded and logistically supported by both the OAR Uncrewed Systems Research Transition Office (UxSRTO) and the OMAO UxS Operations Center (UxSOC). Participants from PMEL, PSL, UxSRTO, UxSOC, and L3Harris performed 11 fully autonomous ship-launching and landing flight operations (14.9 hours of total flight time) off Key West, FL to test and demonstrate the scientific payloads.

Shipboard Launch and Recovery of Unmanned Aerial Systems and Scientific Payloads


Kenneth Vierra 0 4141 Article rating: 3.0


Measurements of vertical profiles of aerosol properties combined with meteorological parameters have primarily been limited to the use of manned aircraft which are expensive to operate and require extensive ground support. Unmanned Aerial Systems (UAS) provide a means to obtain these measurements at much lower cost from ships and land based regions not easily accessed by manned aircraft. The lower cost of UAS operations allows for frequent flights as part of long term monitoring or during intensive field experiments. These observations will help to improve air quality forecasts including those related to emissions from forest fires and industrial activities. In addition, these observations will be used to improve and validate aerosol radiative forcing estimates computed with coupled chemical transport and climate models. The cost of repeated UAS flights relative to manned aircraft allows for statistically significant data sets of aerosol properties of the lower atmosphere (surface to 12,000 ft). In addition, these measurements address NOAA’s Long-Term Goals of improved understanding of the changing climate system and its impact on health of people and communities due to improved air quality.

In 2018 working with the Pacific Marine Environmental Laboratory (PMEL), L3 Latitude was awarded a Phase II NOAA SBIR to ready the HQ-55 for commercial production. This UAS uses a Hybrid Vertical Take Off and Landing (VTOL) – Fixed Wing (FW) technology to allow for autonomous launch and recovery from confined spaces without the need for a runway or catapult. Once launched, the UAS transitions to fixed wing flight with an endurance of up to 10 hours, a ceiling of 12,000 ft, and the ability to carry up to a 15 lb payload. The payload nose cone can be used to house different instrumentation dependent upon the mission. One of these payloads contains instruments for the measurement of total particle number concentration, particle number concentration as a function of particle size, aerosol light absorption coefficient, aerosol optical depth, and aerosol chemical composition. Dr. Patricia Quinn (PMEL) serves as the technical point of contact (TPOC) for the project. Successful test flights with the aerosol payload onboard the HQ-55 took place in April 2019 at the Florence Military Range near Tucson, AZ. An altitude of 7500 ft. MSL (9,300 ft. density altitude) with data from all functioning payload instruments recorded onboard.

With assistance from UAS Program Office, SBIR acceptance testing is planned to be conducted at-sea May 28 to June 1, 2019 with L3 Latitude’s HQ-55 (Figure 1). These first shipboard flights of the HQ-55 will take place on the NOAA RV Ronald H. Brown (Figure 2) during a transit from Woods Hall, MA to Charleston, SC. The goal of this acceptance testing and exercise is to continue to demonstrate the upgraded Hybrid Quadrotor (HQ) technology from a ship with limited deck space and to validate the moving baseline differential GPS and ship landing logic. The UAS will take off from the ship, switch to fixed wing flight, and return and land on the ship. This series of events will be repeated multiple times to build up experience with ship board operations. In addition atmospheric profiles are planned to be completed in the Area of Operation of the ship.

The ultimate goal is to transition “Shipboard Launch and Recovery of Unmanned Aerial Systems with Aerosol Payload Capabilities” from a research platform to a long-term sustained operational capability within NOAA/OAR with NOAA/OMAO providing logistical and asset support.

The next phase of research advancement is to expand on these successes and provide for an operational capability.  As part of this plan, NOAA will acquire the UAS which will be maintained and flown by NOAA’s Aircraft Opera

Development of an Autonomous Payload for Detection of Seals and Polar Bears on Sea Ice

Article Provided By: Erin Moreland (NMFS/AFSC/NMML)

Kenneth Vierra 0 2822 Article rating: 5.0

Polar bears and Ice-associated seals (bearded, ringed, spotted, and ribbon seals) are key components of Arctic marine ecosystems and are important resources for coastal Alaska Native communities. Reliable abundance estimates for ice seals are needed for developing sound management decisions under the Marine Mammal Protection Act and extinction risk assessments under the Endangered Species Act. The animals’ broad and patchy geographic distributions and rapidly changing sea ice habitat make these species particularly challenging to study.

An autonomous payload is required to integrate UAS into surveys of ice-associated mammals, in order to improve the efficiency and human safety in gathering essential data for NOAA stewardship. Moving from occupied aircraft to long-range UAS operations will require an efficient and “smart” payload to collect images needed for abundance estimation and habitat analysis while providing situational awareness to the pilot in command.

The Alaska Fisheries Science Center’s Marine Mammal Lab is developing a system that can run advanced machine learning algorithms on-board the aircraft to process multispectral imagery in real time, minimizing the collection of extraneous imagery that requires burdensome data storage, management, and processing.  Algorithm development is utilizing a neural network approach known as YOLO, which processes imagery at a rate of 60-100 frames per second.  Over 1.8 million color and thermal images are being used to train YOLO to detect animals on the sea ice and classify detections to species. This algorithm will be tested in-flight during April 2019.