News

Small Unmanned Aircraft Systems Research and Operations in Tropical Cyclones (sUAS-ROTC)

Article Provided by: Joseph J. Cione (AOML/HRD)

Kenneth Vierra 0 4379 Article rating: 4.0
In recent years, an increasing number of hurricanes have impacted the United States with devastating results, and many experts expect this trend to continue in the years ahead. In the wake of powerful recent Hurricanes Sandy (2012), Harvey (2017), Irma (2017) Maria (2017) and Michael (2018), NOAA is working to provide improved and highly accurate hurricane-related forecasts over a longer time window prior to landfall. NOAA therefore has taken on the challenge to develop a program that will require applying the best science and technology available to improve hurricane prediction without placing NOAA personnel at increased risk. Unmanned Aircraft Systems (UAS) are an emerging technology in the civil and research arena capable of responding to this need.

NOAA is testing and developing three small UAS platforms with the ultimate goal of flying them into the boundary layer environment — i.e. where the hurricane meets the surface of the ocean — of mature hurricanes. The first effort is the OAR-funded project with AREA-I Inc., while the other two of these efforts (with Black Swift Industries and Barron Associates) are being funded through NOAA’s Small Business Innovation Research (SBIR) Program. 

Shipboard Launch and Recovery of Unmanned Aerial Systems and Scientific Payloads

ARTICLE PROVIDED BY: PATRICIA QUINN (PMEL) AND KENNETH VIERRA, CONTRACT SUPPORT FOR THE NOAA UAS PROGRAM OFFICE

Kenneth Vierra 0 4141 Article rating: 3.0

 

Measurements of vertical profiles of aerosol properties combined with meteorological parameters have primarily been limited to the use of manned aircraft which are expensive to operate and require extensive ground support. Unmanned Aerial Systems (UAS) provide a means to obtain these measurements at much lower cost from ships and land based regions not easily accessed by manned aircraft. The lower cost of UAS operations allows for frequent flights as part of long term monitoring or during intensive field experiments. These observations will help to improve air quality forecasts including those related to emissions from forest fires and industrial activities. In addition, these observations will be used to improve and validate aerosol radiative forcing estimates computed with coupled chemical transport and climate models. The cost of repeated UAS flights relative to manned aircraft allows for statistically significant data sets of aerosol properties of the lower atmosphere (surface to 12,000 ft). In addition, these measurements address NOAA’s Long-Term Goals of improved understanding of the changing climate system and its impact on health of people and communities due to improved air quality.

In 2018 working with the Pacific Marine Environmental Laboratory (PMEL), L3 Latitude was awarded a Phase II NOAA SBIR to ready the HQ-55 for commercial production. This UAS uses a Hybrid Vertical Take Off and Landing (VTOL) – Fixed Wing (FW) technology to allow for autonomous launch and recovery from confined spaces without the need for a runway or catapult. Once launched, the UAS transitions to fixed wing flight with an endurance of up to 10 hours, a ceiling of 12,000 ft, and the ability to carry up to a 15 lb payload. The payload nose cone can be used to house different instrumentation dependent upon the mission. One of these payloads contains instruments for the measurement of total particle number concentration, particle number concentration as a function of particle size, aerosol light absorption coefficient, aerosol optical depth, and aerosol chemical composition. Dr. Patricia Quinn (PMEL) serves as the technical point of contact (TPOC) for the project. Successful test flights with the aerosol payload onboard the HQ-55 took place in April 2019 at the Florence Military Range near Tucson, AZ. An altitude of 7500 ft. MSL (9,300 ft. density altitude) with data from all functioning payload instruments recorded onboard.

With assistance from UAS Program Office, SBIR acceptance testing is planned to be conducted at-sea May 28 to June 1, 2019 with L3 Latitude’s HQ-55 (Figure 1). These first shipboard flights of the HQ-55 will take place on the NOAA RV Ronald H. Brown (Figure 2) during a transit from Woods Hall, MA to Charleston, SC. The goal of this acceptance testing and exercise is to continue to demonstrate the upgraded Hybrid Quadrotor (HQ) technology from a ship with limited deck space and to validate the moving baseline differential GPS and ship landing logic. The UAS will take off from the ship, switch to fixed wing flight, and return and land on the ship. This series of events will be repeated multiple times to build up experience with ship board operations. In addition atmospheric profiles are planned to be completed in the Area of Operation of the ship.

The ultimate goal is to transition “Shipboard Launch and Recovery of Unmanned Aerial Systems with Aerosol Payload Capabilities” from a research platform to a long-term sustained operational capability within NOAA/OAR with NOAA/OMAO providing logistical and asset support.

The next phase of research advancement is to expand on these successes and provide for an operational capability.  As part of this plan, NOAA will acquire the UAS which will be maintained and flown by NOAA’s Aircraft Opera

NOAA Scientists and Engineers Conduct sUAS Test in Florida

ARTICLE AND FIGURES PROVIDED BY: BRUCE BAKER

Kenneth Vierra 0 5502 Article rating: No rating

On March 4-6, a team of nine NOAA scientists and engineers gathered at Avon Park, a U.S. Air Force (USAF) test range north of Sebring, Florida, to conduct first-of-a-kind tests on two small unmanned aircraft systems (sUAS). The team consisted of personnel from the Atmospheric Turbulence and Diffusion Division (ATDD) of NOAA’s Air Resources Laboratory, NOAA’s Unmanned Aircraft Systems Program Office (UASPO), and NOAA’s Office of Marine and Aviation Operations (OMAO) Aircraft Operations Center (AOC). The two sUASs being tested were recently acquired by ATDD. They are a Meteomatics Meteodrone Severe Storms Edition (SSE), which performs vertical takeoffs and landings, and a BlackSwift Technologies S2 fixed-wing aircraft similar in design to an airplane.

The tests were very successful. Over the three-day testing period, the team performed over a dozen flights with the Meteodrone and six flights with the S2. The Meteodrone was flown up to a maximum altitude of 950 m above ground level (AGL), whereas the S2 reached 1200 m AGL during one of its flights. A ground-based radar system, integrated with geospatial software, was deployed in an attempt to determine its capability to mitigate potential threats to these sUAS(s) by targets within the airspace (e.g., traditional airplanes, other sUAS(s), hot air balloons, birds, etc.). During all tests, the ground-based radar system detected both the Meteodrone and S2, as well as other air traffic in the area. To further evaluate the ground-based radar system, on 5 March a NOAA Twin Otter aircraft performed multiple flyovers of the site, and the ground-based radar system detected this aircraft as well. Additionally, Meteodrone data were used to generate analyses of temperature, moisture, and wind fields in near real-time using the Meteomatics software package.

Since Avon Park is a USAF bombing range which NOAA AOC has utilized to test both full-size and drone systems in the past, its airspace is not subject to the same Federal Aviation Administration (FAA) restrictions imposed on the national airspace system. The relaxed limitations enabled the team to fly both aircraft to their respective maximum flight altitudes. Knowing each aircraft’s upper limit and the point at which the operator would lose visual line of sight were key to performing safer, higher flights in the future. Essentially, this exercise enabled the team to measure the same kind of parameters used by air traffic controllers.

Taking measurements of temperature, relative humidity, wind speed and pressure (collectively known as vertical profiles) with a copter and fixed-wing aircraft at such a high altitude hasn’t been done before, so scientists were unsure what to expect. Historical data is sparse, so there has always been a large gap in knowing what is happening with the thermodynamics and kinematics of the atmosphere (e.g. the transformations responsible for weather and climate). Flying the sUAS(s) to higher altitudes enables scientists to design increasingly useful experiments to study the boundary layer – the lowest few kilometers of the atmosphere where we live, where weather occurs, and where ARL focuses its research.

NOAA’s AOC and UASPO are working to obtain Certificates of Authorization (COA) from the FAA to fly up to 10,000 ft. Once COAs are obtained, both of ATDD’s sUAS(s) will be used for vertical profile sampling within the lowest few kilometers of the atmosphere. Higher altitude, more frequent measurements will greatly enhance operational weather forecasting by the National Weather Service (NWS) through analysis of the observations, and inclusion of the data into numerical weather prediction models. These data will also help refine future field intensive studies of the boundary layer. The test at Avon Park paves the way toward eventually having autonomou

ARL, UASPO, and AOC Collaboration Set to Perform Groundbreaking Field Study

Article/Figures Provided By: Bruce Baker and Ed Dumas

Kenneth Vierra 0 3668 Article rating: No rating

On March 4-6, a team of nine NOAA scientists and engineers will gather at Avon Park, a U.S. Air Force (USAF) test range north of Sebring, Florida, to conduct first-of-a-kind tests on two small unmanned aircraft systems (sUAS).  The team consists of personnel from the Atmospheric Turbulence and Diffusion Division (ATDD) of NOAA’s Air Resources Laboratory, NOAA’s Unmanned Aircraft Systems Program Office (UASPO), and NOAA’s Office of Marine and Aviation Operations (OMAO) Aircraft Operations Center (AOC). The two sUASs being tested are recent acquisitions by ATDD. They include a Meteomatics Meteodrone Severe Storms Edition (SSE), which performs a vertical takeoff and landing (Figure 1), and a BlackSwift Technologies S2 fixed-wing aircraft similar in design to an airplane (Figure 2).

Since Avon Park is a USAF bombing range, which NOAA AOC has utilized to test both full-size and drone systems in the past, its airspace is not subject to the same Federal Aviation Administration (FAA) restrictions imposed on the national airspace system. The relaxed limitations will enable the team to fly both sUAS(s) to their respective maximum flight altitudes of approximately 5,000 feet above ground level (AGL). Knowing each aircraft’s upper limit and the point at which the operator will lose visual line of sight are key to performing safer, higher flights in the future. During testing, the team will also employ a ground-based radar system integrated with geospatial software in an attempt to determine its capability to mitigate potential threats to the sUAS(s) by targets within the airspace (e.g. traditional airplanes, other sUAS(s), hot air balloons, birds, etc.). Essentially, this exercise will enable the team to measure the same kind of parameters used by air traffic controllers.

Taking measurements of temperature, relative humidity, wind speed and pressure (collectively known as vertical profiles) with a copter and fixed-wing aircraft at such a high altitude represents a new frontier for atmospheric observations and is currently being done operationally in only a few locations around the globe. Historical data is sparse, so there has always been a large gap in knowing what is happening with the thermodynamics of the atmosphere (e.g. the transformations responsible for weather and climate).  Flying the UAS(s) to higher altitudes will enable scientists to design increasingly useful experiments for the boundary layer - the layer of the atmosphere where we live, where weather happens, and where ARL focuses its research.

NOAA’s AOC and UASPO are working toward obtaining Certificates of Authorization (COA) from the FAA to fly up to 10,000 ft.  Once COAs are obtained, both of ATDD’s sUAS(s) will be used for vertical profile sampling within the lowest 1 km of the atmosphere. Higher altitude, more frequent measurements will greatly enhance operational weather forecasting by the National Weather Service (NWS), as well as future field intensive studies of the boundary layer.  The upcoming field test is paving the way toward eventually having autonomous vertical profiles occurring any time of the day in different locations around the U.S. Currently, there are only about 100 NWS weather forecast offices in the U.S. that perform vertical profiling. They all utilize weather balloons for this twice-daily analysis. ATDD plans to start working with its closest forecast office, in Morristown, Tennessee, to determine how more frequent, more localized vertical profiles help to improved forecasting. ATDD is also continuing to assess new technologies and instrumentation capable of utilization by UAS(s).

RSS