News

UAS Missions Supporting Flood Forecasting Following Hurricane Delta Landfall

Article Provided By: Robert Moorhead (Director, NGI) and John Walker (Contract Support For USRTO). Photos Provided By: Robert Moorhead (Director, NGI)

Kenneth Vierra 0 2427 Article rating: No rating

The NOAA OAR UAS Program, in cooperation with the National Weather Service River Forecast Centers (NWS RFCs) in the Southern Region and the Northern Gulf Institute (NGI; a NOAA Cooperative Institute), established a study several years ago to determine the cost and contributions of UAS-collected data toward improving forecasts and warnings of significant flood events. While the impacts of severe flooding are not isolated to this area alone, according to NOAA NCEI’s 2020 report, U.S. Billion-Dollar Weather and Climate Disasters, “The highest frequency of inland flood (i.e., non-tropical) events often occur in states adjacent to large rivers or the Gulf of Mexico, which is a warm source of moisture to fuel rainstorms”. The need for accurate, rapidly obtainable data in this region is all the more emphasized when this fact is combined with other known impacts from land-falling tropical cyclones each hurricane season. 

In October 2020, NGI added to the list of previous successful UAS deployments in support of this study, as the group was once again called into action by the regional NWS RFC to collect aerial flood image data after Hurricane Delta made landfall in Louisiana and passed through Mississippi. 

NOAA GLERL Great Lakes Cyanobacteria Harmful Algal Bloom Monitoring

Article and Figures Provided By Lauren Marshall (Cherokee Nation Businesses / GLERL)

Kenneth Vierra 0 2519 Article rating: No rating

While the pandemic has presented challenges to field operations these past few months, NOAA Great Lakes Environmental Research Laboratory (NOAA GLERL) has worked to continue collecting data in a safe manner. Data provides critical monitoring of cyanobacteria harmful algal blooms (cyanoHABs) in the western basin of Lake Erie. Crewed aircraft flyover operations, while delayed, continued to provide robust data sets beneath clouds and nearshore. In order to operate comfortably, crewed flyover operations are performed 3500-6500 feet with possible interference from cloud cover that is often forming as low as 1800 feet above the western basin. Next summer, with the support of UASPO funding, GLERL will operate a multi-rotor Uncrewed Aircraft System (UAS) to fly beneath the clouds and provide unprecedented imagery of areas close to shore, addressing a key information gap. The combination of these data sets will support the NOAA Lake Erie HAB Forecast.

L3Harris Successfully Completes Autonomous Shipboard Launch and Recovery of FVR-55 Unmanned Aircraft

ARTICLE AND FIGURES PROVIDED BY KENNETH VIERRA

Kenneth Vierra 0 8161 Article rating: 4.0

On February 17, 2020, flight tests were conducted by L3Harris on the M/V Richard L. Becker off Fort Lauderdale, FL to demonstrate autonomous takeoff and recovery from a moving vessel at-sea.  L3Harris completed all objectives and demonstrated fully autonomous flight using Hybrid Quadrotor (HQ) technology from a moving ship with limited deck space. The FVR-55 took off from the ship vertically, switched to fixed wing flight, and returned and landed vertically on the ship autonomously (no external pilot control inputs required).

Deployment and Operation of the RAAVEN small Unmanned Aerial System (sUAS) in Support of NOAA Science during ATOMIC

ARTICLE AND FIGURES PROVIDED BY GIJS DE BOER (ESRL/PSD/CIRES/CU) AND JANET INTRIERI (ESRL/PSD)

Kenneth Vierra 0 5620 Article rating: 3.5

Supported with UAS Program Office funding, a team from the University of Colorado Boulder will deploy the RAAVEN sUAS from Barbados between 19 January and 17 February 2020. Launch and retrieval will occur from the shore at a field and the adjacent beach in Morgan Lewis, Barbados RAAVEN miniFlux measurements can directly contribute to advancing our scientific understanding relevant to NOAA forecasting efforts across weather and climate scales. Specifically, information on the vertical distribution of dynamic (momentum) and thermodynamic fields (heat fluxes), spatial and temporal variation of PBL height, formation and maintenance of tropical clouds, and ABL stability can be used to evaluate boundary layer and cloud parameterizations. This to examine and better understand the physical processes supporting the organization of tropical clouds and to provide guidance on model physics development. Improving model physics is one of the major goals articulated in NOAA’s Unified Forecast System (UFS) Goals and Priorities document. 

Surveying Antarctic Predators to Inform Fisheries Management

Article and Figures Provided By Douglas Kraus (NMFS/AERD)

Kenneth Vierra 0 3273 Article rating: No rating

NOAA Fisheries’ Antarctic Ecosystem Research Division (AERD) studies and monitors several species of seals and penguins that are indicators of the health of the regional fishery for Antarctic krill. Krill are the focus of an expanding international fishery in the Antarctic, but are also a fundamental food source for the region’s fish, marine mammals, and birds. Accurate census counts and measurements of body condition are fundamental to seal and penguin population management, but can be difficult to obtain in remote polar environments. Funding from the UAS Program Office partially supports said studies.

 

RSS
12345