Developing a UAS-Based Approach for Surveying Northern Fur Seals in Alaska

Article and Figures Provided By: Katie Sweeney (AFSC/MML)

Kenneth Vierra 0 13280 Article rating: 4.5

The northern fur seal population in the Pribilof Islands, Alaska has experienced drastic declines. In 2018, St. Paul Island fur seals reached the lowest pup production levels since 1915, while pup abundance in the Pribilof Islands has declined 50 percent since 1998. It is imperative that NOAA Fisheries continue to monitor and document this decline to identify potential threats to recovery and inform management decisions. Currently, population estimates are derived from biennial pup abundance surveys and are conducted on the ground, requiring the participation of more than 20 researchers and support staff for up to 21 days. This method is costly, labor intensive, and involves disturbing the entire population of fur seals on both islands—an estimated 100,000 pups and many more adults and juveniles.

In partnership with the UAS Program Office, NOAA Alaska Fisheries Science Center’s Marine Mammal Laboratory (MML) is working towards developing a survey approach using unmanned aircraft systems (UAS).

Small Unmanned Aircraft Systems Research and Operations in Tropical Cyclones (sUAS-ROTC)

Article Provided by: Joseph J. Cione (AOML/HRD)

Kenneth Vierra 0 4378 Article rating: 4.0
In recent years, an increasing number of hurricanes have impacted the United States with devastating results, and many experts expect this trend to continue in the years ahead. In the wake of powerful recent Hurricanes Sandy (2012), Harvey (2017), Irma (2017) Maria (2017) and Michael (2018), NOAA is working to provide improved and highly accurate hurricane-related forecasts over a longer time window prior to landfall. NOAA therefore has taken on the challenge to develop a program that will require applying the best science and technology available to improve hurricane prediction without placing NOAA personnel at increased risk. Unmanned Aircraft Systems (UAS) are an emerging technology in the civil and research arena capable of responding to this need.

NOAA is testing and developing three small UAS platforms with the ultimate goal of flying them into the boundary layer environment — i.e. where the hurricane meets the surface of the ocean — of mature hurricanes. The first effort is the OAR-funded project with AREA-I Inc., while the other two of these efforts (with Black Swift Industries and Barron Associates) are being funded through NOAA’s Small Business Innovation Research (SBIR) Program. 

Drone Training for NOAA Shipboard Operation

ARTICLE AND FIGURES PROVIDED BY: CAPT Brian Taggart, NOAA (ret) NOAA Affiliate - Earth Resources Technology NOS/NGS/OCS

Kenneth Vierra 0 3135 Article rating: No rating

The National Geodetic Survey Remote Sensing Division and Office of Coast survey, recently trained seven NOAA ship officers and Navigation Response Team members on drone operations at the NOAA Marine Operations Center in Newport, OR. The successful two-day training included classroom instruction and hands-on flights focused on vessel-based research and mapping missions.

ARL, UASPO, and AOC Collaboration Set to Perform Groundbreaking Field Study

Article/Figures Provided By: Bruce Baker and Ed Dumas

Kenneth Vierra 0 3668 Article rating: No rating

On March 4-6, a team of nine NOAA scientists and engineers will gather at Avon Park, a U.S. Air Force (USAF) test range north of Sebring, Florida, to conduct first-of-a-kind tests on two small unmanned aircraft systems (sUAS).  The team consists of personnel from the Atmospheric Turbulence and Diffusion Division (ATDD) of NOAA’s Air Resources Laboratory, NOAA’s Unmanned Aircraft Systems Program Office (UASPO), and NOAA’s Office of Marine and Aviation Operations (OMAO) Aircraft Operations Center (AOC). The two sUASs being tested are recent acquisitions by ATDD. They include a Meteomatics Meteodrone Severe Storms Edition (SSE), which performs a vertical takeoff and landing (Figure 1), and a BlackSwift Technologies S2 fixed-wing aircraft similar in design to an airplane (Figure 2).

Since Avon Park is a USAF bombing range, which NOAA AOC has utilized to test both full-size and drone systems in the past, its airspace is not subject to the same Federal Aviation Administration (FAA) restrictions imposed on the national airspace system. The relaxed limitations will enable the team to fly both sUAS(s) to their respective maximum flight altitudes of approximately 5,000 feet above ground level (AGL). Knowing each aircraft’s upper limit and the point at which the operator will lose visual line of sight are key to performing safer, higher flights in the future. During testing, the team will also employ a ground-based radar system integrated with geospatial software in an attempt to determine its capability to mitigate potential threats to the sUAS(s) by targets within the airspace (e.g. traditional airplanes, other sUAS(s), hot air balloons, birds, etc.). Essentially, this exercise will enable the team to measure the same kind of parameters used by air traffic controllers.

Taking measurements of temperature, relative humidity, wind speed and pressure (collectively known as vertical profiles) with a copter and fixed-wing aircraft at such a high altitude represents a new frontier for atmospheric observations and is currently being done operationally in only a few locations around the globe. Historical data is sparse, so there has always been a large gap in knowing what is happening with the thermodynamics of the atmosphere (e.g. the transformations responsible for weather and climate).  Flying the UAS(s) to higher altitudes will enable scientists to design increasingly useful experiments for the boundary layer - the layer of the atmosphere where we live, where weather happens, and where ARL focuses its research.

NOAA’s AOC and UASPO are working toward obtaining Certificates of Authorization (COA) from the FAA to fly up to 10,000 ft.  Once COAs are obtained, both of ATDD’s sUAS(s) will be used for vertical profile sampling within the lowest 1 km of the atmosphere. Higher altitude, more frequent measurements will greatly enhance operational weather forecasting by the National Weather Service (NWS), as well as future field intensive studies of the boundary layer.  The upcoming field test is paving the way toward eventually having autonomous vertical profiles occurring any time of the day in different locations around the U.S. Currently, there are only about 100 NWS weather forecast offices in the U.S. that perform vertical profiling. They all utilize weather balloons for this twice-daily analysis. ATDD plans to start working with its closest forecast office, in Morristown, Tennessee, to determine how more frequent, more localized vertical profiles help to improved forecasting. ATDD is also continuing to assess new technologies and instrumentation capable of utilization by UAS(s).