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1 INTRODUCTION 
Our intent with this project was to evaluate the effectiveness of unmanned aircraft system (UAS) platforms to 
produce multiple mapping data and products for elevation and vegetation mapping in marshes and dune 
systems. We sought a UAS solution that could fly multispectral and lidar elevation instruments sequentially on the 
same platform. We contracted to the private sector (Quantum Spatial, Inc., and PrecisionHawk) for UAS data 
collection and conducted the ground truth ourselves (National Estuarine Research Reserve System and NOAA staff 
members). We used multiple National Estuarine Research Reserve System sentinel sites as test beds. While we 
intended to conduct repeat collections to determine relative and absolute elevation change mapping abilities in 
different ecosystems and to evaluate the cost–benefit of acquiring multi-season data for vegetation mapping, 
events beyond our control prevented us from acquiring multi-season data.  

The reserve system and other natural resource stakeholders have a constant need for accurate digital elevation 
models (DEMs) and habitat maps to support a diversity of applications. Applications include supporting sea level 
rise research and management and flood forecasts; evaluating the impact of specific vegetation management 
practices on elevation in marsh microenvironments; assessing beaches after storms for damage assessment and 
restoration purposes; and identifying high priority invasive and sensitive vegetation. Data from multiple high-
resolution multispectral sensors and lidar elevation were acquired for three reserve sites: Jacques Cousteau, New 
Jersey; Grand Bay, Mississippi; and Rush Ranch in San Francisco Bay, California. The data were evaluated on their 
ability to meet specifications, primarily positional accuracy and resolution, and their potential to improve habitat 
mapping. 

The technology readiness level (TRL) at the beginning of this project was approximately TRL 5 (concept validated 
in relevant environment). We proposed a prototype demonstration at pilot sites and evaluation of capabilities 
within the coastal and salt marsh environments to move to TRL 7. In the final analysis, we believe we have moved 
to TRL 8, system demonstration in an operational environment. 

This work addresses two National Ocean Service Roadmap priorities: coastal intelligence and place-based 
conservation. Observations acquired through a UAS would contribute to a strong foundation of geospatial data 
available for oceans and coasts. This project will evaluate the potential for UAS to provide multi-purpose 
ecosystem mapping products in a timely, cost-effective manner. Ultimately, these products could improve the 
ability of resource managers to understand and evaluate the current state and dynamics of the environment they 
manage and enable them to make informed decisions for ecosystem protection, conservation, and management. 

1.1 NATIONAL ESTUARINE RESEARCH RESERVE SITES 

1.1.1 Jacques Cousteau National Estuarine Research Reserve 
The Jacques Cousteau Research Reserve is in New Jersey just north of Atlantic City and encompasses areas around 
Great Bay and Little Egg Harbor. We wanted to use the reserve as our example of a dune ecosystem with the 
primary focus on the lidar elevation capabilities. We expected this to be the easiest ecosystem for lidar collection, 
with significant areas of bare sand and generally sparse vegetation. The originally proposed area for collection was 
the Edwin B. Forsythe refuge with a target collection in November 2016. This area is one of the very few dune 
systems within the reserve system nationwide. 
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Figure 1. Jacques Cousteau Research Reserve boundary, with the Edwin B. Forsythe Wildlife Refuge in red and Brigantine State Park in yellow 

As with all the reserves, the Jacques Cousteau Research Reserve does not own the land. The U.S. Fish and Wildlife 
Service manages the Edwin B. Forsythe Refuge and must grant permission to fly within the refuge. An application 
was submitted to the refuge with the available details on flight duration and patterns. The proposed UAS system 
determines the best flight pattern based on the winds at the time of flight, and the total time needed to fly the area 
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always depends on the weather conditions. The flight uncertainties led the Fish and Wildlife Service to deny the 
application.  
With the Forsythe Refuge unavailable, we had to look for other options quickly. The only other dune ecosystem 
within Jacques Cousteau Research Reserve is at Brigantine State Park, managed by the State of New Jersey. An 
application was submitted in December 2016 with the intent to fly in March 2017. This was a narrow window, 
since the state requires three months to review applications, and the Brigantine area closes for bird nesting in mid-
March. Fortunately, permission was granted in early March, though the window to get the job done was narrow, 
with a hard end date regardless of weather issues. 
 

   

   
Figure 2. Photos at Brigantine State Park illustrating the land cover types and conditions 

1.1.2 Grand Bay National Estuarine Research Reserve 
Grand Bay Research Reserve, near Moss Point, Mississippi, comprises approximately 18,000 acres and contains 
pine savannas, salt marshes, salt pannes, bays, and bayous, as well as terrestrial habitats that are unique to the 
coastal zone. Four areas were selected within the reserve, representing the different ecosystems for the sentinel 
site. These areas had been previously flown with UAS-based imagery, providing an opportunity to compare the 
private-sector data to data collected through a university. We expected this area to be significantly more difficult 
for the lidar to penetrate compared to Jacques Cousteau Research Reserve. 
Obtaining permission to fly at Grand Bay Research Reserve was straightforward and required communicating our 
plans to the U.S. Fish and Wildlife Service as managers of the area. Since this area has seen a number of UAS flights 
in the past, they were more comfortable with the effort, and our request was quickly approved. This site is also far 
enough away from airports that the UAS contractor’s blanket certificate of authorization was sufficient for the 
flights. 
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Figure 3. Grand Bay Research Reserve boundary in blue, with areas flown with UAS outlined in yellow. Areas are numbered 1 through 4 from 
North to South. 
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Figure 4. Ground view of the Grand Bay Research Reserve areas of interest. In clockwise order from the upper left, areas of interest 1, 4, 2, 3. 

 

1.1.3 San Francisco Bay National Estuarine Research Reserve (Rush Ranch) 
Rush Ranch is one of the two areas of the San Francisco Bay Research Reserve and consists of tidal marsh and 
cattle grazed upland near Suisun City, California. Our original plan was to survey the marsh area twice: once in the 
fall of 2016 and once in the late spring or early summer of 2017. Rush Ranch is within 5 miles of Travis Air Force 
Base and required an additional site-specific Federal Aviation Administration (FAA) certificate of authorization to 
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fly, unlike the other two reserves, which were covered by PrecisionHawk’s blanket certificate of authorization.

 
Figure 5. San Francisco Bay Research Reserve’s Rush Ranch area shown in blue, with the area flown by UAS in yellow 

PrecisionHawk applied to the FAA for a certificate of authorization in May 2016, shortly after the project was 
funded. We planned flights for September 2016. The certificate approval was delayed, but we went ahead with 
fieldwork plans in September in the hopes that the FAA would approve the certificate of authorization by early 
October, before the vegetation state changed. October came and went without FAA approval, and we missed the 
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flying season. Discussions with the San Francisco Bay Research Reserve director suggested we should target June 
2017 for our first flights to avoid black rail nesting season. 
The FAA did not approve the certificate of authorization until December 2016. The FAA transitioning from the 
Section 333 exemptions to the Part 107 rules may have partly caused the delay. When they did approve the 
certificate, it was only valid through April 2017, when PrecisionHawk’s Section 333 exemption expired. 
PrecisionHawk had transitioned to the simplified Part 107 rules and certifications, and an extension had to be 
requested under Part 107. PrecisionHawk requested the extension, and they were told in February 2017 that it 
should be approved in a few weeks. The final approval came in May, just in time for the June flights. 
Meanwhile, back at Rush Ranch, instead of the marsh being accessible in June as expected, it would stay closed for 
endangered birds until September 1, 2017. We made plans to fly the upland areas in June instead. Shortly before 
mobilizing, we decided to do one set of flights of both the marsh and upland areas in September instead of flying 
the uplands in June and the marsh in September. This reduced mobilization costs for all parties. We already had no 
way to get multi-date data in the marsh, so that decision did not affect our research. 
The marsh at Rush Ranch is very dense. While standing in the marsh, a person frequently cannot see any ground. 
The Salicornia (pickle weed) grows densely as much as a foot tall, making it one of the easier vegetation types to 
travel through. Higher patches of Juncus, Schoenoplectus americanus, Typha, and Grindelia were more difficult. All 
vegetation types varied in density, and the possibility exists to get lidar points to the ground in the sparser 
instances. In general, we expected Rush Ranch marsh to be the hardest area to penetrate to ground; this area also 
has the greatest variability in ground cover. The uplands typically had dry grasses (Bromus and star thistle) with 
some areas mowed or allowing cattle grazing (example vegetation is shown in Figure 6). 
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Figure 6. Example land covers at San Francisco Bay Research Reserve’s Rush Ranch 

1.2 CONTRACTING 
The contract for UAS services was done as a task order on the Coastal Geospatial Services Contract administered 
through the NOAA Office for Coastal Management and the Eastern Administrative Support Center (EASC). This is a 
Brooks Act contract vehicle, in which awards go to the best-qualified company and are not selected through a 
bidding competition. With little data available for contracting UAS work, we selected a prime contractor (Quantum 
Spatial) with a solid record of accomplishment in metric mapping and a sub-contractor (PrecisionHawk) with 
extensive experience with UAS systems and working with the FAA. 
The costs for each site were higher than originally anticipated in our proposal to the NOAA UAS Program. This was 
primarily due to the processing work needed for the lidar data, the extent of which was not fully appreciated 
during proposal generation. To fit the budget and best meet the objectives of the proposal, we scaled back the 
flights to do multi-date flights at only one of the sites. Since Rush Ranch (San Francisco Bay) was the most 
ecologically complex and therefore most likely to benefit from multiple seasons of data, we chose it for multiple 
dates. As noted earlier, this plan did not work out because of nesting restrictions. 
During the planning phases of this project, we anticipated that PrecisionHawk would use its Lancaster 5 fixed-wing 
platform and hot swap the sensors. Technology is evolving rapidly in this area, and we quickly had a choice 
between staying with old technology for comparability between sites and moving to new technology to evaluate 
current capability. We chose to move to current capability. The changes made will be detailed in the results, but we 
note it here because private-sector contracting allowed us to take advantage of those changes instead of using 
what we could have bought at the start of the project. 
Based on observations of the effort the contractors put into the job and the progress they made in improving their 
mapping capability through the course of this project, we believe that their costs exceeded what we paid. We 
mention this here because the costs per square mile for this UAS contract look very high compared to the typical 
costs for manned flights, and it might be thought that the contractor was overcharging. The reverse is true. The 
project made a good public-private partnership where each contributed resources to advance the technology 
readiness level for UAS-based metric mapping. 

1.3 SPECIFICATIONS 
The specifications for data products mirrored typical manned data specifications with some modifications for UAS 
capabilities (Table 1). For lidar, the 10 centimeter vertical uncertainty is typical of modern large-area collections 
and is part of the standard 3D Elevation Program specification. The 30 points per square meter density is higher 
than normally found for manned lidar and reflects the greater density expected from low altitude. Four-band 
imagery is also very typical for manned collections, but 3 centimeter pixels reflects what we believed should be 
attainable from the lower altitude. The 15 centimeter horizontal accuracy is also tighter than a typical manned 
imagery collection, but reflects a similar distance in terms of pixels. 
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Table 1. Imagery and lidar specifications 

Lidar 
Vertical accuracy 0.10 meters RMSEz (root mean square error for z) 
Density 30 points per square meter 

Imagery 
Number of bands 4 (red, green, blue, NIR) 
Ground sample distance/pixel size 0.03 meters 
Horizontal accuracy 0.15 meters RMSE (root mean square error) 
 
 

2  JACQUES COUSTEAU NATIONAL ESTUARINE RESEARCH RESERVE 

2.1 METHODS 
In preparation for UAS lidar and imagery flights at Jacques Cousteau Research Reserve, we placed spatially 
distributed targets in the North Brigantine State Natural Area. Targets were either 11 or 12 inches on a side with 
an “iron cross” pattern. We constructed the 11-inch targets with a laser printed pattern affixed to a heat sensitive 
foam board. The 12-inch targets were floor tiles spray-painted with the design. We held the foam tiles in place with 
long wire stakes inserted into the sand. The ceramic floor tiles were heavy enough to stay in place, and we used 
them in the more exposed areas to minimize potential movement. We surveyed target locations with a Trimble R8 
real time kinematic (RTK) GPS. For six location, we also surveyed the targets with rapid static GPS for 20 minutes 
as a check on the accuracy of the RTK. We surveyed 33 photo-id targets, including four of existing features in the 
environment (concrete corner, piling, etc.). We placed and surveyed the targets on March 6, 2017. 
We conducted elevation surveys for validation at the photo-id targets and along profiles. The profiles followed the 
standard beach profile methodology used by the research reserve system. 

  

Figure 7. Examples of targets used. On the left is a foam-backed target and on the right is a floor-tile target. All targets had the potential for 
coverage by sand, which may have made their identification harder. 

The flights for UAS lidar used a PrecisionHawk Lancaster 5 UAS with a Velodyne Puck VLP-16 based lidar system 
and commenced on March 7, 2017 (specification in Table 2). The Lancaster 5 is a fixed-wing platform
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 with a dual-frequency GPS. At a nominal survey altitude of 50 meters, the pulse density was projected to be 30 
pulses per square meter. PrecisionHawk pilots conducted the flights as a sub-contractor to Quantum Spatial. Windy 
conditions were a problem throughout the week, frequently gusting over 20 mph (Figure 8). Lidar collections were 
carried out when the wind conditions allowed on March 7, 8, and 10.  

 

Figure 8. Weather conditions from March 7 to March 14, 2017, from the Steeleman Bay KNJBRIGA14 station 

  



 

 Lidar and Imagery from UAS Page | 11 

Table 2. Specifications for the lidar survey at Jacques Cousteau Research Reserve 

Lidar Survey Settings and Specifications 

Acquisition Dates March 7, 8, and 10, 2017 

Aircraft Used PrecisionHawk Lancaster Rev 5 Dual-Frequency 
GPS 

Sensor Velodyne Puck VLP-16 

Maximum Returns 2 (Strongest/Last Return) 

Nominal Pulse Spacing 18 centimeters 

Nominal Pulse Density 30 pulses/meter2 

Survey Altitude (AGL) 50 meters 

Target Speed 27 knots 

Field of View 110 degrees 

Scan Frequency 5-20 hertz 

Pulse Rate 300 kilohertz 

Pulse Duration 6 nanoseconds 

Pulse Width 15 centimeters 

Wavelength 903 nanometers 

Pulse Mode Single Pulse in Air 

Beam Divergence 3 milliradians 

Swath Width 143 meters 

Overlap 50% 

 
Imagery collection followed when wind conditions allowed on March 12, 2017, with a 5-band MicaSense sensor on 
the fixed-wing Lancaster (specifications in Table 3). The combination of the Lancaster airspeed and the MicaSense 
minimum frame rate of 1 hertz (Hz) required flying at an altitude resulting in a ground sample distance more than 
twice the contract specification (6.5 centimeters instead of 3 centimeters). The intent was to fly two 3-band 
sensors that did meet the resolution specification after the MicaSense flights; however, the weather prevented 
those flights from happening before the area was closed for bird nesting (piping plover). 
A miscommunication between the sub and prime contractors resulted in no ground control being set for the lidar 
and imagery collections. This seriously affected the spatial accuracy of the products. A subsequent effort was made 
to improve the results using five of the NOAA validation points, though this proved inadequate. 
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Table 3. Specifications for imagery collection at Jacques Cousteau Research Reserve 

Digital Orthophotography Specifications 

Equipment MicaSense RedEdge 

Spectral Bands Blue, green, red, NIR, red edge 

Ground Sample Distance 8 centimeters per pixel at 120 meters 

HFOV (horizontal field of view) 47.2 degrees 

Frame Rate 1 frame/second 

Final Project Resolution 6.5 centimeter pixel size 

Image 12-bit geoTIFF 

Flight Altitude 100 meters 
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2.2 RESULTS 

2.2.1 Coverage 

 
Figure 9. Imagery coverage at Brigantine State Park with photo-id targets shown as green triangles and the area boundary shown in red. The 
imagery collection was not extended over water to match the boundary by mutual agreement. 
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Figure 10. Coverage by lidar is shown for Brigantine State Park. Elevation checkpoints are shown as green triangles. 

The imagery and lidar coverage are shown in Figure 9 and Figure 10, respectively. Part of the area of interest was 
over water, and the flights did not cover that area by mutual agreement since there was no need to risk the aircraft 
for data that we would not use. 
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2.2.2 RTK versus Rapid Static 
We compared GPS results using RTK and rapid static observations for five points. Though it has limited statistical 
significance, we did it primarily as a validation that we were getting comparable results from the RTK such that we 
could trust the RTK as ground truth for further comparisons. The two methods had a mean difference of 2 
centimeters horizontally and 1.1 centimeters vertically. We considered this sufficient validation of the RTK to use it 
as our ground control. The RTK observations were for less than 15 seconds, and the rapid static observations were 
for 20 minutes or more. 
 
Table 4. Comparison between Static GPS and RTK 

Static GPS (X90D)   RTK (Trimble R8)  Horiz 
Diff 
[m] 

 Vert 
Diff 
[m] 

SiteID Northing [m] Easting [m] Ellipsoid 
Height [m] 

  Site ID Northing [m] Easting [m] Ellipsoid 
Height 
[m] 

JC01 4365198.788 557167.264 -32.555   t6 4365198.813 557167.26 -32.571 0.025 0.016 

JC02 4363699.582 556080.667 -31.27   t27 4363699.622 556080.66 -31.273 0.041 0.003 

JC03 4366007.492 557725.93 -31.687   t16 4366007.482 557725.92 -31.685 0.016 -0.002 

JC04 4365624.971 557504.828 -32.078   t14 4365624.974 557504.83 -32.063 0.005 -0.015 

JC05 4364596.078 556695.371 -32.941   t2 4364596.064 556695.37 -32.921 0.015 -0.020 

 

2.2.3 Elevation 
Nineteen of the twenty elevation-suitable validation points fell within the elevation coverage area. The 20th point 
did not have sufficient lidar coverage. We used the lascontrol tool from LAStools to create a triangulated irregular 
network (TIN) of the bare-earth lidar points around each validation point and interpolate the elevation at the 
validation point. The RMSEz was 1.46 meters with a standard deviation of 0.36 meters and an average error of 
negative 1.42 meters. This indicates that most of the error is in the bias, which is reasonable given the lack of 
control during collection. However, even if we remove the bias, the standard deviation is far higher than the 10 
centimeter RMSEz specification.  
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Figure 11. Histogram of errors for lidar at Jacques Cousteau 

We also compared the RTK points from the profiles to the lidar. These points are spatially restricted to the 
beach/dune region (see coverage map) and may be in vegetation, although the vegetation would not have been 
dense. The RMSEz for the 472 points that lascontrol found near enough to lidar points is lower at 1.35 meters, 
although the standard deviation is higher at 0.97 meters. 
The contractor (PrecisionHawk) had made significant improvements to its lidar processing between the time of the 
Jacques Cousteau Research Reserve data delivery (May 2017) and the flights at San Francisco Bay Research 
Reserve (September 2017). We gave them five of our control points to use in reprocessing the data in late 
September. The hope was to improve the data to the point where it would be useful to Jacques Cousteau Research 
Reserve. Reanalysis of the data indicated that there was no way to improve it and maintain scientific integrity of 
the data. PrecisionHawk is planning (as of June 2018) to do another flight within Jacques Cousteau during the fall 
of 2018 with improved platform and sensors, but that flight will not be in time for this report. 

2.2.4 Imagery 

2.2.4.1 Positional Accuracy 
In general, we had difficulty finding the photo-id targets in the imagery. Because the image resolution was coarser 
than anticipated, there were fewer pixels covering a target than originally designed. Instead of a target covering 
approximately 10 x 10 pixels, they were only about 5 x 5 pixels. However, rarely did the targets show any of the 
design. The majority appeared as either a black square or a white square despite their actual design. This made it 
very difficult to be certain we were really looking at the target and accurately determining the center point. Some 
examples of the targets in the imagery are shown in Figure 12. 
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form

 

 
 

 

 
   

Figure 12. Examples of the targets seen in the imagery with no stretch. Green triangles show the position surveyed. Only a minority of the targets 
showed a noticeable pattern. 

With 22 targets identified to the best of our ability, the radial RMSE was 0.60 meters, resulting in a National 
Standard for Spatial Data Accuracy (NSSDA) horizontal accuracy at 95% confidence of 1.04 meters. This is as 
expected given the lack of ground control used in the processing and is an important result illustrating the need for 
ground control when doing metric mapping. While obvious for those frequently engaged in metric mapping, many 
UAS operators may not have experience in this type of mapping if they come from fields where precise 
geopositioning is not important. 
The contractor-provided report indicated that significant processing needed to be done to the imagery to get this 
level of accuracy, including non-standard practices used because of the positioning problems, as indicated by the 
following taken from the report, where PH is PrecisionHawk and QSI is Quantum Spatial, Incorporated. 

The initial mosaics delivered by PH had significant offsets when compared to base imagery from the NOAA 
National Geodetic Survey (NGS) Sandy Coastal Mapping project. The pixel sizes were also inconsistent 
between the two mosaics; therefore, QSI provided additional support to the orthoimagery portion of the 
project by resampling imagery to a pixel size of 6.5 centimeters to ensure consistency. To correct the 
inaccuracy, the PH-delivered mosaics were georectified to the NOAA NGS Sandy imagery using photo-
identifiable features from each set of imagery. This resulted in a more accurate and useable dataset, but is 
considered a non-standard image processing practice and would not be used if correct GPS/IMU processing 
resulted in accurate initial positioning. 

2.2.4.2 Image quality 
The imagery was delivered as two 5-band orthorectified mosaics in geoTIFF format, one for the northeast end and 
one for the southwest end. Bands are in the order red, green, blue, near infrared (NIR), and red edge. The seamlines 
between images in the mosaics look very good. The contractor technical report states: 

Spectral artifacts exist in the imagery mosaics as well. This is likely due to a combination of issues 
including, but not limited to: 1) Inconsistent cloud cover, 2) Saturation, 3) Color balancing, and 4) Relative 
positioning of frames. PH is aware of these artifacts and is working to better calibrate the imaging system 
moving forward. Additionally, some of the imagery positioning would not solve, which manifested as gaps 
in the final mosaic.  

The lack of distinct colors in the landscape makes it difficult to verify the band order of the data. It appears that it 
should be blue, green, red, NIR, and red edge, contrary to the order listed in the contractor’s report. The images in 
Figure 13 show some of the spectral artifacts that may make the imagery difficult to use. Images are false color 
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infrared (RGB = NIR, red, green) and true color, depending on which band order is correct. The left images assume 
order blue, green, red, NIR, red edge. The right images assume red, green, blue, NIR, red edge.  
 
 

  

Area along the estuary side of the park shown 
with bands 4, 3, and 2. Possible false color 
infrared 

Area along the estuary side of the park shown 
with bands 4, 1, and 2. Possible false color 
infrared 

  

Possible true color using bands 3,2,1 Possible true color using bands 1,2,3 

Figure 13. Comparison of imagery to determine the band order. Several spectral artifacts can also be seen in the data. 
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For comparison, the landscape in the field was generally sand or brown vegetation. Most water bodies were blue. 
There were a few evergreen trees and they pop out as expected in both possibilities of the false color infrared. 
Photos showing field conditions are shown in Figure 14. Consultation with the contractor confirmed that the band 
order is blue, green, red, NIR, red edge. 
 

  

  

Figure 14. Photographs of the landscape illustrating the color balance and palette expected in the imagery 

In general, these data are not suitable for analysis where spectral band consistency is important, such as image 
segmentation or deriving land cover by automated processes. It may still be useful for visual interpretation of 
features, though the poor spatial accuracy precludes integrating the imagery with other high-precision data sets 
such as lidar and field surveyed features. Because of these factors, we did not carry out the planned segmentation 
of the imagery, since we did not expect it to give useful results. 
 
 

3 GRAND BAY NATIONAL ESTUARINE RESEARCH RESERVE 

3.1 METHODS 
We placed photo-id targets in each of the four areas for Grand Bay. The targets 
consisted of rectangular pieces of siding material measuring approximately 12 inches 
by 24 inches as shown in Figure 15. Twenty-one (21) targets were visible in the imagery 

Figure 15. Photo-id target 
used at Grand Bay Research 
Reserve 
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and could be used for accuracy assessment. The targets were distributed in the four areas of interest as shown in 
the target placement images (Figure 16) where yellow triangles represent each target and the red polygon is the 
area boundary. Targets were surveyed using RTK GPS before the collection of imagery. Note that a hole was drilled 
in each target (not shown) and a ¾” PVC pipe was used to secure each target while allowing it to float when the 
tide came in.  
The flights for UAS lidar used a PrecisionHawk Lancaster 5 fixed-wing unmanned aerial vehicle (UAV) with a 
Velodyne Puck VLP-16 based lidar system as in Jacques Cousteau Research Reserve. The imagery was acquired 
using the Zenmuse X5 digital camera manufactured by DJI, Inc., mounted on a DJI Matrice 100 quad-copter UAV 
platform. This was a change in both sensor and platform compared to Jacques Cousteau. Imagery was flown to 
produce a 3 centimeter ground sample distance from 50 meters above ground level. The camera provides a 16 
megapixel 8-bit GeoTiff image at up to seven frames per second. Weather was favorable and the flights were 
carried out from May 9, 2017, to May 11, 2017. 
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3.1.1 Target Placement 

Areas of Interest 1 - Cladium 

 
Areas of Interest 2 - Upper 

 
Areas of Interest 3 - MB 

 
Areas of Interest 4 -SPAL 

Figure 16. Images showing the placement of photo-id targets within each area of interest as yellow triangles. The imagery backdrop is not from 
the UAS. 

3.1.2 Ground-Truth Comparisons 
We determined the spatial accuracy for the imagery by locating the photo-id targets in the imagery and comparing 
the location based on the image georeferencing with the surveyed location of the target. For the lidar data, the lidar 
points classified as ground were used to create a TIN. For each ground-truth location, a value was interpolated 
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from the TIN to obtain the height at that point. The difference between the surveyed ground-truth and the 
interpolated lidar was then calculated. 

3.2 RESULTS 

3.2.1 Coverage 
Coverage for the imagery is shown in Figure 17 for Grand Bay. During collection, we noted that area of interest 4 
had a significant area of water that probably was not of interest and that capturing it added extra risk in the event 
of a flight problem. The principal investigator and the UAS contractors agreed not to collect data over the water 
and some additional terrestrial data were collected. Other than this acceptable difference, the imagery covered the 
areas of interest, including a buffer. 

1.  

2.  

3.

 

4.

 

Figure 17. UAS imagery coverage for Grand Bay Research Reserve. Areas over water were not covered by mutual agreement in the field. 
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Lidar collection coverage is very similar to the imagery collection (Figure 18). The coverage shown in the images is 
the bare-earth derived DEM. Areas covered by water, such as streams, are shown as blank, illustrating that water 
areas have been properly classified. 
 

1.  

2. 

 

3.  

4.  

Figure 18. Lidar coverage in Grand Bay Research Reserve, with area of interest boundaries shown as a red outline 

 

3.2.2 Imagery 
The quality and accuracy of source imagery plays a key role in usability and in determining the final accuracy of 
imagery-derived mapping products. Through this project, we assessed the acquired UAS imagery for both spatial 
accuracy and image quality in order to determine its effectiveness for habitat mapping. Spatial accuracy refers to 
the positional agreement between real-world coordinates and image-derived coordinates of photo-identifiable 
features. Image quality is a subjective metric. We tested it by using the imagery as a component of a habitat 
classification process. Image quality refers to criteria such as effective spatial resolution (i.e., size of the smallest 
object that can be resolved on the ground), radiometric resolution (i.e., smallest change in intensity level that can 
be detected by the sensing system), and geometric consistency (e.g., relief displacement, scale, color balancing). 
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Lightweight UAVs are more susceptible to wind buffeting than traditional aircraft, which in turn can increase 
image-to-image scaling issues. These errors become readily apparent in orthomosaics, and they have a direct 
impact on image processing and map production. The maximum operating ceiling for small UAS’s of 400 feet also 
imposes challenges by greatly increasing the number of individual nadir frames needed to assemble a seamless 
orthomosaic of a scene.  
 

3.2.2.1 Spatial Accuracy 
We tested spatial accuracy following standard positional accuracy guidelines for digital geospatial data. A 
minimum of 20 independent horizontal checkpoints for each project area were established to test the accuracy of 
the imagery. According to the contract specifications for this project, the UAS imagery was to have a resolution of 3 
centimeters or better and a horizontal accuracy of 15 centimeters or better at the 90% confidence level. These 
specifications required the independent checkpoints to be surveyed to a horizontal accuracy of 5 centimeters or 
better, and in fact they were surveyed to 2 centimeters or better. 
 
The photo-id targets used at Grand Bay Research Reserve were larger than those used at Jacques Cousteau, and the 
imagery had a smaller ground sample distance. The pattern on the targets showed well enough to identify the 
center. Examples are shown in Figure 19 where the green triangles are the surveyed center of the target displayed 
in the image coordinates.  
 

 
 

Figure 19. Examples of photo-id targets in the UAS imagery with the surveyed location of the target shown as a green triangle. If the imagery 
georeferencing were perfect, the green triangle would be in the center of the target. 

With only 21 targets, the spatial accuracy was assessed for the entire 
project instead of by individual area of interest. However, it was noted 
that one area of interest was significantly different than the others. Area 
2 (Upper) appeared as though no adjustment had been made to account 
for the contractor’s ground control. The RMSE (n=6) was 0.84 meters, 
significantly higher than the specification. For all areas together, the 
RMSE (n=21) was 0.47 meters while excluding area 2 resulted in an 
RMSE (n=15) of 0.14 meters, which is within the specification. The 
contractor was asked to check if a mistake had been made with area 2. 
The contractor found that area of interest 2 was in the wrong datum 
(ITRF96). After correction, the overall horizontal spatial accuracy was 
0.15 RMSE, which meets the contract specification. 

3.2.2.2 Image Quality 
The quality of the delivered color-balanced orthomosaics was generally 
quite good. The spatial resolution, or ground sample distance, of the UAS 
imagery for the Grand Bay Research Reserve mission was 2.9 

Figure 20. Image illustrating the detail in the 
imagery 
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centimeters. This is equivalent to the highest resolution orthoimagery commonly acquired by aircraft. At this 
resolution, features that are larger than approximately 10 centimeters can be easily discerned from the 
background or adjacent features as long as they are spectrally differentiable (Figure 20). The Grand Bay imagery 
was delivered as 8-bit unsigned integer data with 256 possible pixel values per band. This contrasts with most 
metric mapping imagery used for classification work, which is typically 12- or 16-bit, with up to 65,536 possible 
pixel values.  
 
The 4-band imagery was generated by 
flying the area twice, once with an RGB 
camera and once with a green-red NIR 
camera. While the registration of these is 
generally very good, certain features within 
the scene caused spectral inconsistencies 
and horizontal displacement problems. 
Objects that moved during the time 
between the RGB and green-red-NIR 
acquisitions were imaged in two different 
locations, causing ghosting effects. An 
example of this can be seen in Figure 21 
where the boat moved between the flight 
times. The NIR channel (shown as red) has 
the boat to the right of the green and red 
channels (shown as blue and green). 
  
 
Similarly, objects that have significant vertical structure (e.g., trees and shrubs) caused issues in the compiled 4-
band imagery. The tops of these features often appeared in different locations in the RGB and NIR-green-blue 
images. In most cases this was because of differences in the sensor locations and look angles between the two 
acquisitions. Another significant issue was the shadows cast by the tall vegetation. Due to the resolution of the 
imagery, shadows were prominent and distinct, and they appeared in different locations in the two sets of imagery. 
This impacted the classification results quite significantly, to the degree that we added an additional step to classify 
the shadows separately in order to model the true underlying habitat class using contextual information in 
subsequent steps (Figure 22). Finally, while wind was not a factor during the Grand Bay flights, it has the potential 
to cause motion-induced object displacement problems. 
 

 
 

Figure 21. Ghosting from combining imagery acquired at different times can be seen with 
the boat. 
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Figure 22. Sun angle change between collections affected the shadows of the combined band product. 

 

 
UAS imagery is often characterized by artifacts that result from mosaicking the thousands of frames required to 
cover areas of interest. While mosaicking and color-balancing algorithms are robust and able to generate high 
quality image mosaics, the sheer number of frames and seamlines required inevitably lead to features appearing 
smeared, warped, multiplied, and omitted. In extreme cases, segments of the Grand Bay Research Reserve imagery 
exhibited high-frequency, radial distortions that caused significant blurring of the target features and reduced the 
image quality so that its effective spatial resolution was probably far less than the actual resolution of 2.9 
centimeters (Figure 23). 

3.2.2.3 Classification 
There are aspects of marshes that make them easier to map than other environments, most notably the distinct 
spectral differences associated with wet versus dry features and vegetated versus non-vegetated, and the 
structural characteristics of tall, woody vegetation versus shorter, non-woody vegetation. Conversely, mapping 
specific habitats or plant species within the marsh platform (including low, mid, and high marsh classes) can be 
very challenging because of the similar spectral and structural characteristics of those features. Certain measures 
can be taken to help improve mapping results, such as using multiple dates of imagery and lidar and using imagery 
acquired when plants are most differentiable spectrally (i.e., leveraging knowledge of plant phenologies). 
 
In order to assess image quality from a classification perspective, we performed a series of tests using the UAS 
imagery as an input to a habitat classification process. Rather than completing a final habitat map for publication, 
we focused on the largely automated steps that comprise the initial steps of a habitat classification process. This 
approach helped minimize the subjectivity associated with this type of work. The first step was to generate image 
segments from the orthomosaics. Image segmentation recursively groups pixels until homogeneity criteria are met, 
producing relatively homogenous polygons. We were then able to associate quantitative characteristics with each 
unique segment (e.g., length/width, spectral range and variance). These multi-dimensional “image objects” 
inherently characterized the imagery based on spatial and spectral patterns. Quality-controlled, field-based habitat 

Figure 23. Smearing and blurring in the imagery that may be a 
result of the mosaicing and orthorectification process 
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data were then used to classify training samples that were then employed to perform a supervised classification to 
generate a draft habitat map. The actual classification method included a variety of thresholding and random-
forest classifiers. These steps were repeated using the WorldView 3 satellite orthoimagery previously used to 
generate a draft habitat map for the Grand Bay Research Reserve. This approach (i.e., using two different source 
images) allowed us to apply standard image processing and classification workflows in parallel using the same in 
situ training data to assess the trade-offs between UAS imagery and more typical satellite imagery. A comparison of 
imagery specifications is shown in Table 5 and example imagery is shown in Figure 24. 
 
Table 5. Comparison of satellite and UAS imagery specs at Grand Bay Research Reserve 

 Worldview 3 UAS Zenmuse X5 

Resolution 1.2 meters 3 centimeters 

Bands 8 4 (3+1) 

Date acquired May 2015 May 2017 

 
In a typical habitat classification workflow, a draft map would be subjected to additional processing in the form of 
localized spatial modeling and manual editing in order to generate a final habitat map. These steps were not 
performed as part of this assessment. Instead, the UAS and Worldview orthoimagery-derived draft maps were 
compared to each other and to existing habitat maps. Areas of agreement and disagreement were determined, and 
a set of stratified random samples were generated for field-based investigation to allow us to compute a variety of 
accuracy assessment statistics. The results of these tests informed us about the quality of the UAS imagery and 
whether the UAS data can produce a higher quality draft map than one generated from manned aircraft 
orthoimagery using standardized, automated processes. 
 
 

  
Figure 24. Comparison of UAS imagery (left) and WorldView 3 imagery (right) for the same area 
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3.2.2.3.1 Image Processing 
Habitat classification within the four areas of interest at the Grand Bay Research Reserve was performed using a 
combination of image segmentation and classification routines available in Trimble’s eCognition software. 
Segments were created using scale parameters that maximized the effective resolutions of both the UAS imagery 
and the WorldView 3 satellite imagery. Effective resolution was determined by qualitatively assessing the size, 
shape, and configuration of image segments and their use in discerning unique habitat features. This resulted in the 
generation of 19,662 segments for the UAS imagery and 1,341 segments for the WorldView imagery (Table 6). The 
large difference was driven primarily by the difference in image resolutions. 
 
Table 6. Segment comparison between UAS and satellite imagery 

Sensor Resolution Scale Parameter Number of Segments 

UAS Matrice 100 | Zenmuse X5 2.9 centimeters 200 19,662 

WorldView 3 1.2 meters 25 1,341  

 
In addition to the number of segments generated, the boundaries of the segments also varied (Figure 25). The 
difference in image resolution drove this at least partially, with the WorldView segments appearing significantly 
coarser when compared to the UAS segments. However, the differences extended to the actual delineation of 
features as well. Some boundary differences were attributed to temporal changes between 2015 and 2017 (e.g., 
different tide stages, transient piles of wrack, and management impacts such as controlled burns), and other 
boundary differences were attributed to illumination differences. The higher resolution UAS imagery exhibited 
much more spectral variation for given target features because of variable sun angles and differences in vegetation 
stature on the marsh (e.g., upright, leaning, or flattened due to wind, waves, weight, and wrack). 
 
 

  
Figure 25. Comparison of segments generated shown on the imagery 

 
The greater detail in the UAS imagery allowed much smaller features to be segmented and subsequently classified. 
At the scale shown here (Figure 25; 1:1,000) it is clear that the UAS segments follow distinct boundaries between 
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vegetated and non-vegetated areas. It is more difficult to discern the boundaries between different types of 
vegetation using just the spectral information. The color-infrared rendering of the WorldView imagery highlights 
the breaks between different types of vegetation more distinctly, despite the coarser resolution. Textural 
information within the UAS-derived segments may actually provide better discriminating characteristics because 
the imagery has the potential to capture a vertical profile of different vegetation types. For example, we noted that 
Juncus roemerianus (mid marsh) often exhibited randomly oriented cross-hatch patterns owing to the fairly rigid 
stems and upright-to-somewhat-leaning stature. Conversely, we noted that Spartina alterniflora (low marsh) often 
exhibited linear patterns that were fairly uniform within a segment but varied between segments. This information 
can be harvested using textural characterization features to help inform classifications.  
 
Once the image segments were generated, we ran a supervised classification using a series of thresholding and 
random-forest classifiers to generate a largely automated, draft habitat map. We adjusted a few of the threshold 
parameters to better accommodate the different spectral and radiometric resolutions of the two different sets of 
imagery. Habitat classes were selected based on previous research reserve mapping efforts and are aligned with 
the National Estuarine Research Reserve System habitat classification standard (Table 7), though we only used 
classes that were present in the project area.  
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Table 7. National Estuarine Research Reserve System habitat classification table 

Class ID Class Name Indicator Species 

0 background  

1 bare (developed)  

2 beach  

3 impervious (roads)  

4 impervious (buildings)  

5 salt panne Salicornia virginica 

6 low marsh Spartina alterniflora 

7 mid marsh Juncus roemerianus 

8 high marsh Spartina patens, Distichlis spicata 

9 low shrub  

10 mid shrub Baccharis halimifolia 

11 high shrub Iva frutescens 

12 grassland Cladium jamaicense 

13 shrub non-marsh Pinus elliottii 

14 pine Pinus elliottii 

15 water  

16 shadow  
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Figure 26. Comparison of initial UAS and satellite classifications 

 
After the draft maps were prepared, we used a set of field validation points to generate confusion matrices and 
compute accuracy statistics to help interpret the results and understand where the two imagery sources provided 
value. We should note that some of the validation points were located in areas that fell below the minimum 
mapping area of the WorldView image segments. It is clear just from looking at the two maps (Figure 26) that a 
certain amount of confusion exists within the low and mid marsh classes and salt pannes. While not shown on 
these maps, there was also confusion between the shrub classes and marsh and grass classes. This was primarily 
due the lack of sufficient training data for the shrub classes.  
 
The overall accuracy for the UAS map was 71% (kappa statistic = 0.63), and the overall accuracy for the WorldView 
map was 60% (kappa statistic = 0.52). These values compare quite favorably to the overall accuracy of the existing 
Grand Bay Research Reserve habitat map. which was 33% (kappa statistic = 0.22), although the existing map was 
based on 2007 imagery and we noted several significant landscape changes had occurred between 2007 and 2017.  
 
Water mapped very well, and pine mapped fairly well but was subject to errors associated with validation points 
that were not directly coincident with single-crowns and instead fell on shrub or grassland classes. Interestingly, 
the WorldView imagery exhibited considerably more confusion between pine and shrub than the UAS imagery, but 
did not exhibit the confusion between pine and grassland that the UAS imagery demonstrated. This disparity can 
be explained by the inclusion of a shadow class in the UAS-derived map. Had the shadow class been addressed 
through additional modeling, many of those areas would have flipped to grassland or shrub and the observed error 
would be less. The emergent marsh classes appeared to map fairly well, though there was certainly confusion 
between low and mid marsh, and high marsh was simply underrepresented. We observed this same pattern with 
the WorldView map, which points to the need for more training data for these classes and the use of more 
aggressive classifiers, possibly including more textural and contextual information. The marsh shrub classes were 
also underrepresented in both the training data set and the map, leading to poor accuracy results. It should be 
noted that there was some confusion between upland shrub and pine and grass. This is because the upland shrub 
class was generated using structural characteristics and no training data were available for the class. Salt pannes 
were an interesting feature. The user’s accuracy (false positives metric) was 98%, but the producer’s accuracy 
(false negatives metric) was 66%. Upon further investigation, most of the confusion was between pannes and mid 
marsh, and was attributable to segments that wrapped around small pannes but were primarily Juncus. In some 
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cases, the validation point clearly fell in a mid-marsh segment. This could indicate horizontal displacement within 
the image mosaic that exceeded the measured amount of displacement. 
 
Table 8. Kappa table for Grand Bay Research Reserve 

 Ground Truth 

Cl
as

si
fie

d 
M

ap
 

Class 
Value 

C_3 C_5 C_6 C_7 C_8 C_10 C_12 C_13 C_14 C_15 C_16 Total User 
Accu
racy 

Kappa 

C_3 0 0 0 1 0 0 0 0 0 0 0 1 0.00 0.00 

C_5 0 57 0 1 0 0 0 0 0 0 0 58 0.98 0.00 

C_6 0 5 51 17 1 0 1 0 0 0 0 75 0.68 0.00 

C_7 0 21 53 134 0 10 1 0 0 0 0 219 0.61 0.00 

C_8 0 1 0 0 4 0 0 0 0 0 0 5 0.80 0.00 

C_10 0 0 0 2 0 2 0 0 1 0 0 5 0.40 0.00 

C_12 0 3 0 0 1 4 53 0 8 0 0 69 0.77 0.00 

C_13 0 0 0 0 0 1 6 0 5 0 0 12 0.00 0.00 

C_14 0 0 0 0 0 0 8 0 39 0 0 47 0.83 0.00 

C_15 0 0 0 0 0 0 0 0 0 28 0 28 1.00 0.00 

C_16 0 0 0 0 0 0 0 0 1 0 0 1 0.00 0.00 

Total 0 87 104 155 6 17 69 0 54 28 0 520 0.00 0.00 

Prod 
Accur
acy 

0.00 0.66 0.49 0.86 0.67 0.12 0.77 0.00 0.72 1.00 0.00 0.00 0.71 0.00 

Kappa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 

 
Interestingly, the WorldView map exhibited significant confusion between low marsh and water, whereas the UAS 
map did not confuse these classes. The reason appears related to ability of the UAS imagery to resolve the fringing, 
semi-submerged Spartina alterniflora, while the water absorption in the NIR bands of the WorldView imagery 
overpowered the vegetation signal.  

3.2.2.3.2 Classification conclusions 
UAS imagery appears to provide some useful benefits for classification purposes, but introduces challenges that are 
not often encountered using traditional, publicly available orthoimagery. The increased detail is the primary 
benefit, but the ability to acquire imagery at opportune times to maximize phenological differences is also a 
potential benefit. Very high-resolution imagery (≤ 10 centimeters) has the potential to yield extremely detailed 
segments, especially when compared to the size of the mapped features. However, segments that are smaller than 
the resolution of incorporated DEMs exhibit variations in first surface elevations that are not consistent with the 
inherent spectral characteristics of the affected segments and can lead to classification errors. 
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The Grand Bay Research Reserve image classification effort revealed several challenges. Acquiring the 4-band 
imagery using two sensors at different times was one problem and can be resolved in the future using a single 
multispectral sensor. We noted many instances of segments being influenced by the inclusion or exclusion of band 
4 (the NIR band), especially where vertical structures (e.g., trees) caused horizontal image displacement, which 
reshapes segments because of shadows. This artifact introduces a great amount of error in layers that rely on the 
NIR band in band ratio algorithms. The normalized difference vegetation index, which relies upon the ratio 
between the NIR and red bands at coincident locations and is extremely useful for characterizing different types of 
vegetation, is skewed considerably in shadowy areas. In order to accommodate shadows, classification routines 
need to break them out separately and then model them to conform to the true underlying habitat. In order to 
generate a more accurate habitat map using this imagery, we would need to process 3D structural cover types 
excluding NIR band and then merge the classes in a subsequent step. 
 

3.2.2.4 Comparison with other UAS imagery 
One of our objectives was to evaluate the potential advantages of using private-sector mapping firms compared to 
more opportunistic acquisitions with UAS. Project partners, cooperative institutes, or any other connection could 
operate these opportunistic acquisitions. Obviously, we could not evaluate all possible sources of UAS imagery 
data. However, Grand Bay Research Reserve has had these same areas flown with imagery multiple times through 
a mechanism other than the private sector. To our knowledge, these data have no claim for any particular spatial 
accuracy and were not flown with an accuracy objective. Their accuracy should be typical of results from an 
experienced operator flying without ground control. 
We examined data sets from 2015 and 2016, comparing them to our 2017 data. We focused our comparison on the 
sediment elevation table (SET) benches and boardwalks, because they are features that should be stationary in the 
environment and would not have seasonal changes. These also provided features of known shape and properties 
that help to detect imagery issues. We did not do an exhaustive examination of the imagery looking for faults but 
simply compared the areas around some of the known features. 
In Figure 27, we can see the benches around a SET in the imagery from three consecutive years. All of the benches 
should be in the same place if the images were accurately georeferenced. However, we see that they are not. Since 
we did photo-id points and measured the accuracy of the 2017 data, we have faith that it is in the right place. For 
2015 and 2016 data, we see that they do not agree with the 2017 data, and they do not agree with each other by an 
even greater degree. The misalignment of the data is such that automated processing for change detection would 
be very difficult to impossible unless a way was found to correct it. Note that we did not do anything to try to 
correct or re-mosaic the earlier images. They are simply as delivered to Grand Bay Research Reserve. 
 
  



 

 Lidar and Imagery from UAS Page | 34 

 

2015 

2016 

2017 
Figure 27. UAS imagery from 2015, 2016, and 2017 showing the same benches around a SET. Image coordinates are aligned such that these 
images have the same corner coordinates. 

We extracted locations for identifiable points on the boardwalks to get a more quantified look at the differences, 
with some points in each of the four areas. All year-pairs were compared and the offsets were plotted in x and y 
directions (Figure 28). While there are not sufficient points to make many conclusions, it does appear that there 
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are large differences (typically meters) between positions and the degree of difference varies greatly within the 
images for any given pair of years. 

 
Figure 28. Positional offsets of identifiable points on the boardwalks 

 We also looked for evidence of issues with the mosaicking process. We see discontinuities in the boards for the 
2015 and 2016 data. We did not try to determine if the cause of these image problems was from the original image 
positioning or the mosaicking process itself. Figure 29 shows a couple of examples of the artifacts in the 2015 and 
2016 imagery. The boards, which should be straight, have discontinuities and replication. Smearing is seen in 
several areas of the images. We also see some color issues, such as the blue area at the north end of the 2015 board. 
In contrast, the 2017 imagery primarily had problems related to flying the NIR band at a different time of day, but 
discontinuities were not evident.  
 

  
Figure 29. Images with artifacts from 2015 (left) and 2016 (right) 

Overall, the private-sector flown imagery appears to be a superior product. It was better in terms of both image 
quality and positional accuracy. 
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3.2.3 Lidar 
Lidar accuracy for non-vegetated areas had an RMSEz of 
0.072 meters using 106 points (Figure 30). This meets the 
contract accuracy specification of 0.10 meters RMSEz. 
Errors are not normally distributed, in contrast to our 
expectation for non-vegetated areas. The scatterplot of the 
lidar and survey NAVD88 elevations shows a very narrow 
range of less than a meter. This is to be expected for the 
low-lying marsh. The histogram of errors shows a skew to 
the high side (Figure 31). 
The point density for lidar was very high, as expected. 
There were 105 points per square meter on average for the 
area and slightly over 3 points per square meter were 
classified as ground. However, wet or dark ground had 
lower return rates. This is consistent with manned lidar 
systems using NIR  lasers. Materials that are dark at the 
frequency of the laser are much less likely to return a signal 
sufficient to be counted as a return. NIR lasers typically 
have trouble getting a return signal from wet surfaces 
because the water has low reflectivity and high absorption, 
reducing return signal strength. In Figure 32 you can see 
such an area of dark or wet ground. On the left are the lidar 
returns colored by elevation. The white areas have few 
returns. On the right is the imagery for the same area where 
you can see that the low return areas correspond to the dark 
ground. 
 

  
Figure 32. Area of wet ground with few lidar returns 

 
In the vegetated areas, the lidar accuracy results can be split into vegetation classes (Figure 33). We generally see 
the pattern in the RMSEz that we also see with manned aircraft. The thicker marsh grasses have RMSEz values in 
the neighborhood of 20 to 25 centimeters. 

Figure 30. Ground truth versus lidar elevations in Grand Bay 
Research Reserve 

Figure 31. Histogram of elevation error at Grand Bay 
Research Reserve 
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Figure 33. Lidar vertical root mean square error in different vegetation types (Grand Bay Research Reserve) 

 
The bias in thick marsh grasses is a known issue with manned lidar. We hypothesize that returns from the grass 
within about 30 centimeters of the ground result in the system being unable to respond to the actual ground 
return. A combination of pulse length and system response and recovery time preclude the ability to resolve 
elevation differences at that scale. The lidar returns in the grass are often such that the lowest returns look like 
ground to the automated classifiers and are misclassified. One of the tests for this research was whether the 
smaller spot size on the ground would allow the UAS lidar to penetrate to the ground where there were holes in the 
cover. Looking at the mean error by vegetation type (Figure 34), we see that the RMSEz error is primarily driven 
by the mean error for the marsh grasses (Cladium, Juncus, and Spartina). 
 

 
Figure 34. Lidar mean error in different vegetation types 

 
The horizontal accuracy of lidar is generally more difficult to determine. We can use some of the boardwalks in the 
imagery to make some estimate though. We have already found the imagery to have a radial RMSE of 0.15 meters. 
Comparing the locations of the boardwalks in imagery and lidar suggests approximately 0.7 meters shift in the 
north-south direction and 0.4 meters shift in the east-west direction (Figure 35). 
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Figure 35. Boardwalk in area of interest 2. Returns from the wet mud around the planks made returns (green dots) scarce and the boardwalk 
more apparent in the lidar. 

 
 

3.2.3.1 Comparison with manned lidar 
Lidar covering Grand Bay Research Reserve was flown from manned platforms in 2015 and 2005. The two data 
sets from 2005 are before or shortly after Hurricane Katrina, and it is likely that there have been significant 
changes in the landscape since that time. Therefore, we will only compare results to the 2015 lidar data collected 
for the Mississippi Department of Environmental Quality and the U.S. Geological Survey. The lidar was collected 
and processed to meet a maximum nominal post spacing (NPS) of 0.7 meters. The NPS assessment is made against 
single-swath, first-return data located within the geometrically usable center portion (typically about 90%) of each 
swath. The data were collected using a Leica ALS70 500 kHz Multiple Pulses in Air (MPiA) lidar sensor and a 
Chiroptera II sensor. The ALS70 sensor collects up to four returns per pulse, as well as intensity data, for the first 
three returns. The Chiroptera II sensor provides 35 kHz bathymetric data and up to 500 kHz topographic data.  
 
The 2015 data were tested for accuracy using 60 non-vegetated survey points and 50 vegetated survey points. The 
non-vegetated accuracy was 0.166 meters at the 95th percentile (0.085 meters RMSEz) and the vegetated accuracy 
was 0.168 meters at the 95th percentile. It is unlikely that any of the validation points were in the Grand Bay 
Research Reserve areas of interest because the data set covers almost 6,000 square miles. 
 
While the non-vegetated accuracy results for the UAS and the 2015 lidar are very similar (0.72 and 0.85 meters, 
respectively), we are most interested in whether the UAS has an advantage in the vegetated areas. We do not have 
information on the vegetation types used in the original 2015 vegetated accuracy analysis, and it is unlikely that 
they represent marsh habitat well. Instead, we will use the UAS ground-truth points for both, with some caveats. 
Table 9 and Figure 36 show the RMSEz comparison. 
 
Table 9. Manned versus UAS lidar in vegetation 

Veg Type RMSE 2015 RMSE UAS Mean 2015 Mean UAS Samples 

Baccharis 0.23 0.06 0.20 0.02 17 

bare ground 0.37 0.08 0.33 0.04 55 

Cladium 0.57 0.25 0.56 0.23 97 
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Distichlis 0.12 0.07 0.10 -0.05 6 

Juncus 0.36 0.23 0.35 0.20 155 

Panne 0.05 0.07 0.03 -0.04 51 

Pine 0.24 0.14 0.22 0.11 66 

Spartina 0.19 0.21 0.17 0.18 98 

 
 

 
Figure 36. Manned (2015) and UAS lidar error in different vegetation types 

 
In general, we see the UAS has a lower RMSEz than the 2015 lidar. One difference that stands out and needs 
explanation is the high RMSEz for bare ground in the 2015 lidar, far higher than the 2015 ground-truth survey 
estimates. An examination of imagery from 2015 and 2017 indicates that many of the 2017 bare ground points 
were not bare ground in 2015 or may be a result of lower point density in 2015. We also see consistent mean bias 
values for Cladium, Juncus, and Spartina, each showing roughly 20 centimeters too high. Removing 20 centimeters 
from the lidar ground points in those classes results in RMSEz values of 10-11 centimeters. 
 
From these findings, we conclude that for the type of marsh found in Grand Bay Research Reserve, the UAS-based 
lidar does provide an advantage over traditional manned lidar. The RMSEz values are significantly reduced, and it 
appears there may be a bias that could be removed from the ground points using an appropriate habitat map. 
 

3.2.4 Structure from Motion 
The contractor generated a point cloud from the imagery using structure from motion (SfM) techniques. The point 
cloud created via SfM is always a first surface model and only represents the ground in bare areas. We wanted to 
look at two aspects of the SfM output: 1) comparison with the lidar first surface; and 2) if more consistent than 
lidar, whether we could use it with the lidar bare-earth to generate better canopy heights.  
Preliminary examination of the SfM point cloud in area of interest 1 (Figure 37) indicated that it had spurious 
artifacts. In particular, there were impossibly low points that were also away from the area of interest. After 
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removing those points, the point cloud still had significant gaps and many points that were much higher than 
expected (Figure 38).  
 

 
Figure 37. SfM point cloud for area of interest 1. Noise 
points are circled in the lower left.  

Figure 38. SfM point cloud for area of interest 1 after 
removing points below -5 meters 

 
 

 
Figure 39. Area of interest 2 SfM didn’t have the noise 
problem, but the pattern and the elevation range (20.6 to 
36.4 meters) didn’t make sense. 

 
Figure 40. Lidar for area of interest 2 with all points. Some 
similar structures can be seen toward the center. The 
elevation range (in NAVD88) makes much more sense. 
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Figure 41. Area of interest 3 SfM. In this area dominated by 
marsh grass, the elevations are more sensible than area of 
interest 2, but still high since nothing was above our heads. 

 
Figure 42. The lidar for area of interest 3 shows a smaller 
range than the SfM data. These values are in good 
agreement with our field experience. 

 

 
Figure 43. The SfM for area of interest 4 appears the most 
reasonable of the areas. In this area, MLLW is 11 
centimeters above 0 NAVD88, thus -0.41 is unlikely and 
much of the area in green is shown as below mean sea level. 

 
Figure 44. Lidar elevations for area of interest 4 shown on 
the same scale 

 
The differences seen between the lidar and the SfM data (Figures 37-44 above) indicate that attempts to create a 
canopy model between the two would not be fruitful. In general, the SfM data were not believable for the terrain 
mapped. The issues with the SfM were different for each area of interest, suggesting the problems are related to the 
landscape and not the processing approach. 
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4 SAN FRANCISCO BAY NATIONAL ESTUARINE RESEARCH RESERVE (RUSH RANCH) 

4.1 METHODS 
For the final field campaign at Rush Ranch, adjustments were made based on what we had learned at the Jacques 
Cousteau and Grand Bay Research Reserves. The photo-id targets were made significantly larger as 18” square 
pieces of ⅛” thick yellow foamed PVC (Figure 45). Black Duck tape was used to create a checker pattern. Holes 
were drilled in the corners to allow staking the targets; a hole at the center was drilled to set the point of the RTK 
survey rod. Thirty new photo-id targets were distributed in the area of interest, approximately half in the upland 
and half in the marsh. One of the old targets was also deployed. 

  

Figure 45. The image on the left shows the size of the targets used at Jacques Cousteau compared to the new targets before Duck tape patterning. 
The image on the right shows the final targets as deployed in the uplands at Rush Ranch. 

The vegetation at Rush Ranch generally prevented affixing a target flush to the ground without damaging the 
marsh. Therefore, we anchored the targets horizontally, but floated on top of the lowest vegetation we could find. 
We did not use them for lidar elevation assessment. The distribution of the targets is shown below (Figure 46). 
There were areas in the marsh that were not accessible due to large water channels, particularly in the southern 
area. In addition, we could only enter the western side at one area near the middle (where three points are 
clustered). This resulted in a very long hike in 114°F heat. To mitigate the potential danger of having the contractor 
also make that hike, we donated one of the photo-id points to them. It is the orange pentagon in the target 
placement image.  
An additional test element was added at Rush Ranch to evaluate the resolving power of the imagery. While the 
ground sample distance provides the size of the pixels, it does not necessarily indicate the size of objects that can 
be differentiated. We printed a 1951 USAF resolution test chart on an 4-foot x 4-foot vinyl banner and staked it to 
the ground. Unfortunately, it appeared that the largest lines were approximately 1 inch wide and unlikely to be 
resolved. We added strips of black fabric above the chart to expand our resolution range. The fabric strip sets were 
4, 8, and 12 centimeters wide. The deployed chart is shown in Figure 47.  
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Figure 46. Photo-id placement at Rush Ranch 
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Figure 47. USAF-1951 resolution chart with additional resolution strips at 4, 8, and 12 centimeter widths 

4.2 FLIGHTS 
PrecisionHawk changed platforms and sensors for the Rush Ranch collection. The platform for both imagery and 
lidar was the DJI Matrice 600 hexacopter. The imagery sensor was the MicaSense 5-band used at Jacques Cousteau, 
and the lidar sensor was a YellowScan systems integration of a Velodyne Puck. With a flight ceiling of 200 feet 
imposed by the FAA certificate of authorization, the imagery collection was expected to take much longer than the 
lidar collection. PrecisionHawk brought two platforms and flew them simultaneously, one with lidar and one with 
imagery. Once the lidar was complete after three days, both hexacopters flew imagery to complete the mission 
faster. Flights began September 5 and completed September 10, 2017. 
Over 380,000 images were collected, four times more than originally planned because of the airspace restriction. 
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We were able to keep the drones in view up to 1.5 kilometers away. Typical flight times were about 20 minutes in 
duration with about 5 minutes between flights for battery change and data USB swap. The high heat during the 
flights required extra fire precautions as the take-off and landing sites were in the dry uplands. They kept the 
generators for charging the batteries in the back of a pickup or placed them on plywood to reduce the risk of fire. 
Using the MicaSense camera instead of the ZenMuse was a decision made by the NOAA and National Estuarine 
Research Reserve System team. The MicaSense would give 5 bands collected simultaneously, but would not meet 
the resolution specification (4 centimeter instead of 3 centimeter ground sample distance). We deemed this 
preferable to combining images from two 3-band cameras with non-simultaneous data as seen in Grand Bay. 
 

4.3 RESULTS 

4.3.1 Coverage 
Lidar coverage is shown below as a density map for all points and for ground classified points. The entire area of 
interest was covered. Water areas have lower point density as expected. The lidar data were very dense, averaging 
over 500 points per square meter and exceeding 1,000 points per square meter in places. The density of ground-
classified points shows a high number of points in the uplands, in the 20 to 30 points per square meter range, with 
lower penetration in the marsh. However, there were patches in the marsh that also approached 20 points per 
square meter, and areas where no points were deemed to have penetrated to the ground. 

 
Figure 48. Density map for all lidar points 

 
 
Imagery coverage extended beyond the bounds of the area of interest but had some holes in it. The holes were in 
the hilly areas and the rapid relief may have led to the problems. This was most noticeable in the north. The river 
on the west side also had holes, but it is outside the area of interest. The NoData value was not designated in the 
files but appears to be a zero in all bands. Real data did not conflict with this. 
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Figure 49. Imagery spatial coverage at Rush Ranch 

4.3.2 Imagery 
The final imagery collection for Rush Ranch was considerably different from originally planned by NOAA and 
agreed upon by the contractors. The areas originally submitted with the statement of work consisted of three 
smaller areas within the marsh totaling approximately one square mile of area with a plan for repeat coverage. At 
that point, we anticipated that it could be flown at an altitude of 400 feet. Consolidation of areas and the loss of an 
opportunity to get multiple seasons of coverage within the marsh changed this to a single area of approximately 
two square miles. The certificate of authorization also restricted the flight altitude to 200 feet. Combined, this 
changed an estimated 2-3 day collection of disconnected areas to a 6-day collection. 
Radiometric consistency was directly affected by these changes. Rather than three separate areas, each collected 
within a limited amount of time and thus limited light variability, the collection was spaced over six days, with all 
types of light conditions, and without any separation of areas. It is reasonable to expect that for the original three 
areas of interest, the radiometric values within each area would have been consistent and any variation between 
areas caused by different time and lighting conditions would have been less glaring because they were 
independent of each other. Low collection altitude compounded this problem by dramatically increasing the 
collecting period, and the smaller image footprints made mosaicking and color balancing more challenging. 
The volume of imagery data and the changing light conditions inherent in collecting all day for six days resulted in 
many processing issues. PrecisionHawk used the Amazon Cloud for the processing but still had to break the 
processing up into blocks. PrecisionHawk set and surveyed 44 targets in this project area, which for the area 
seemed at the time to be professionally adequate. They drew their image-processing boundaries in a way that 
maximized the number of ground control points in each block and tried to overlap control points along seams, 
while trying to group by illumination. However, even with their best efforts, some of the blocks only had 3-4 
ground control points. These data were processed in Agisoft PhotoScan, which is a robust photogrammetric 
software but in this case was unable to combine the large number of images and low number of ground control 
points into a horizontally accurate data set. The only way around this would have been to increase the ground 
control from 44 points to around 110 points. 
Mosaicking all the blocks together to make a color-balanced final image failed to produce a good product. The 
learning curve PrecisionHawk had to go through to handle over 380,000 images delayed the delivery of the 
imagery by many months. Final delivery of 11 blocks was received on April 27, 2018, almost eight months after the 
flights completed in early September. With an area approximately six times larger than the originally anticipated 
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individual areas and half the flying height, PrecisionHawk had to mosaic approximately 24 times more images 
together than they had planned, and those images had much greater illumination variability. This illustrates a 
potential limiting factor for UAS collection areas that cannot be collected rapidly due to their size. In contrast, a 
manned flight with a large format digital camera might need less than 100 frames to cover the area with standard 
stereo overlap and could be covered with relatively constant illumination, though the turns would greatly reduce 
efficiency. 
The variability in illumination made the imagery impossible to color balance, resulting in the approach of 
processing by blocks of similar illumination. Even with this approach, there are color balance issues within blocks. 
Mosaicking the blocks, as with the coverage image above, clearly shows the color balance issues at the block 
boundaries. Although the imagery clearly has faults, the Quantum–PrecisionHawk team did everything they could 
under difficult circumstances with a task that was well beyond the original plan and agreement. They contributed 
significant amounts of their own resources, likely contributing more money to the project than NOAA did. 

4.3.2.1 Positional Accuracy 
The horizontal positional accuracy was measured by the Quantum–PrecisionHawk team and by the NOAA–
National Estuarine Research Reserve System team independently with results of 1.626 meters and 2.09 meters 
(n=33) RMSExy, respectively. This is far worse error than the specification of 15 centimeters. The spatial 
distribution of the error is non-random (see Figure 49), with the highest errors in the hills. It is not clear from the 
contractor’s technical data report that they accounted for elevation during the orthorectification process. We asked 
for clarification, and the contractor did verify that elevation was used in the orthorectification process. However, it 
was elevation derived from the imagery (see “Structure from Motion” section), and this may have been the cause of 
the problem. 
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Figure 50. Imagery spatial distribution of positional errors for Rush Ranch 

The analysis of the imagery resolving power indicated that the final mosaicked imagery is able to resolve features 
that are approximately the width of a pixel. The image in Figure 51 clearly shows the 4-centimeter wide fabric 
strips. Surprisingly, the largest bars on the USAF-1951 chart can also be resolved, although they should have been 
slightly smaller than a pixel. 
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Figure 51. USAF-1951 chart as seen in the mosaicked imagery. No stretch was applied. 

4.3.2.2 Imagery Analysis 
Plant spectral characteristics have been researched extensively since the early 1960s (Gates, Keegan, Schleter, & 
Weidner, 1965). Known relationships between spectra and spectral indices (e.g. leaf area index and normalized 
difference vegetation index) have found increasingly wide use in vegetation and plant population studies. Despite 
the tremendous body of research, applications for remote sensing in vegetation and ecological studies are 
constrained by accuracy, accessibility, and scalability challenges. UAS platforms, sensor technologies, and software 
innovations have significant potential to address these challenges by improving data quality, providing repeatable 
analytical methods, and streamlining data management and processing routines. More importantly, these emerging 
technologies have proven effective at reducing the level of effort and ecological impacts of data collection in 
sensitive habitats, while maximizing the information content of imagery data outputs. Our analysis of the Rush 
Ranch imagery aims to evaluate information gain as the spatial resolution of imagery increases. We compare UAS, 
aerial, and satellite imagery products along a gradient of spatial resolutions ranging from approximately 0.04-
meter to 2-meter pixel resolution. We summarize the classification methodology and image-processing approach 
and present a quantitative and qualitative analysis of our results. Image classification data products and accuracy 
metrics are included at the end of the report. 
 

4.3.2.2.1 Approach 
We focused primarily on evaluating spatial and spectral characteristics that differentiate UAS, aerial, and satellite 
imagery. To quantify results, we compared the accuracy of classified imagery data across five unique imagery 
products (Table 10) within a supervised classification framework. To streamline data processing and analysis we 
constrained the study area to an approximately 4-acre area of interest. The area of interest provides a 
representative sample of the site’s vegetation assemblage and reduces the possibility of introducing spectral and 
spatial variability from image processing artifacts, stitching, edge effects, environmental factors, and radiometric 
calibration. Data inputs were limited to three spectral bands (R, G, B) for consistency and to facilitate analysis 
across different imagery types. Classification was accomplished by applying multiple synthetic classification 
routines to a set of UAS, aerial, and satellite imagery data (Table 10). Intermediate classification products were 
evaluated for suitability, and a final classification approach was selected from a qualitative analysis of the 
intermediate data.  
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Table 10. Imagery resolution, acquisition dates, and product type (Rush Ranch) 

Imagery Type Resolution Bands  Acquisition Date Product 
UAS .04 meters R, G, B September 4-10, 2017 Precision Hawk, 5-band multispectral 
Aerial .12 meters R, G, B August 25, 2017 TerrAvion, 5-band multispectral 
Aerial .12 meters R, G, B September 21, 2017 TerrAvion, 5-band multispectral 
Satellite .4 meters R, G, B August 19, 2017 World View 2, Pan-sharpened NC 
Satellite 2 meters R, G, B August 6, 2014 World View 2, 8-band multispectral 
 

4.3.2.2.2 Imagery Analysis and Processing 
Imagery analysis was conducted in ArcGIS Pro utilizing classification, segmentation, and image processing tools 
available commercially through ESRI’s ArcGIS platform. Classification and segmentation routines were scripted 
and executed in a Python 3.6.4 programming environment to ensure repeatable results and analytical consistency. 
Scripts are archived in the project database along with imagery, intermediate data, and classification results. The 
final classification approach was based on results of the initial exploratory data analysis, which included the 
following: 

• Principal Components Analysis 
• Maximum Likelihood Algorithm 
• Nearest Neighbor Classification 
• Random Forrest Algorithms 

4.3.2.2.3 Image Segmentation 
Image segments were generated for each imagery product outlined in Table 10. Image segmentation recursively 
groups pixels until homogeneity criteria are met, producing relatively homogenous polygons with associated 
quantitative characteristics (e.g., length/width, spectral range and variance). These multi-dimensional “image 
objects” characterize the plant population based on spatial and spectral patterns. Three main parameters were 
adjusted to control image segmentation: 

1. Spectral detail: relative measure of importance (weight) of the spectral variability of image segments that 
are generated via the segmentation algorithm 

2. Spatial detail: relative measure of importance (weight) of the size of image segments that are generated via 
the segmentation algorithm 

3. Minimum segment size: defines the minimum mapping unit 
Image segmentation results (see Figure 54, Figure 57, and Figure 60) varied widely depending on input and scale 
parameters (see 1-3 above). Spatial and spectral detail influenced segmentation results to a lesser degree than 
segment size alone. However, we did not quantify the significance of individual input parameters, as this was 
beyond the scope of our investigation. Input parameters were iteratively adjusted to optimize segmentation and 
reduce the spatial variability of image segments across imagery products. Segmentation tended to obscure 
vegetation boundaries in the high-resolution UAS imagery segmentation. Segmented boundaries were consistently 
disassociated with vegetation boundaries that were clearly delineated at the pixel level. However, this effect was 
less pronounced in the satellite and aerial image segments due to larger pixel size. 

4.3.2.2.4 Final Classification Approach 
While manual optimization (parameterization) of image segments generally improved results, it had the 
undesirable effect of introducing bias from the analyst. Ultimately, manual optimization precluded the 
standardization of the classification approach across imagery products. More importantly, segmentation 
consistently failed to accurately delineate vegetation communities at smaller spatial scales (see image 
segmentation section). To minimize information loss and biases resulting from image segmentation, we opted for a 
pixel-based classification approach. This approach classifies each pixel independently, whereas segmentation 
aggregates pixels to produce larger discreet image objects from recursively grouped pixels. Pixel-based 
classification provides a more detailed classification at a finer spatial resolution but suffers from “noise” in the 
scene. This approach may be best suited for vegetation communities with relatively high diversity and spatial 
heterogeneity, such as Rush Ranch.  
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The final image classifications were generated with a supervised classification approach using identical algorithms 
and input parameters. Training polygons were digitized from vegetation communities readily identifiable in the 
UAS imagery and were then used to generate spectral training data for the UAS, aerial, and satellite imagery. A 
maximum likelihood classification algorithm was applied to assign individual pixels to one of five classes (Table 
11) representing a dominant vegetation type. Image processing was scripted to ensure that the classification 
methodology was consistent for all classified outputs.  
 
Table 11: Vegetation classification class names and classification codes 

Class Name Class Code 
Salicornia pacifica C_1 
Typha spp. C_2 
Schoenoplectus americanus C_3 
Schoenoplectus acutus C_4 
Juncus balticus C_5 

 

4.3.2.2.5 Accuracy Assessment 
An accuracy assessment was conducted for each of the classification results and a standard-error matrix was 
generated along with a statistical estimation of classification accuracy. Accuracy results were compared to quantify 
differences in classification accuracy between UAS, aerial, and satellite imagery and across vegetation types. 
 

4.3.2.2.6 Imagery Classification Results 
The accuracy assessment was conducted in ArcGIS Pro. Error matrices, producers and users accuracy, and kappa 
statistics were calculated for all classified data sets. The classification accuracy improved with increasing spatial 
resolution in all cases (Table 12). Previous research in this ecological community are consistent with these results. 
Interannual variation and temporal differences may account for some variation in classification accuracy, 
particularly with respect to the August 2014 World View-2 product. However, the magnitude of the accuracy 
difference was much higher than would be expected due to variation in the spatial extent (or shifts) of vegetation 
communities across acquisition dates (e.g. UAS imagery vs. WV-2 2014 imagery). Further investigation is 
recommended to qualify these results.  
 
Table 12: Comparison of accuracy assessment results 

Imagery Type Resolution Overall Accuracy Kappa Product 
UAS 0.04 meters .936 .92 Precision Hawk, 5-band multispectral 
Aerial 0.12 meters .724 .655 TerrAvion, 5-band multispectral 
Satellite 0.4 meters .704 .63 World View 2, Pan-sharpened NC 
Satellite 2 meters .64 .55 World View 2, 8-band multispectral 

 
Our research demonstrates that UAS imagery provides higher classification accuracy and is more representative of 
the vegetation assemblage when compared to satellite and aerial imagery and their derivative classification 
products. Vegetation classes are clearly delineated in the UAS classification. Conversely, satellite classification 
often confounds classes, and lacks the well-defined boundaries that are apparent in the UAS classification. Aerial 
imagery classifications sufficiently represent vegetation community boundaries but with less precision than the 
UAS imagery. With the exception of the 2-meter World View-2 classification, all classified data outputs exceeded 
the overall accuracy of the existing 2015 habitat map (overall accuracy = 0.697) generated from the 2-meter World 
View-2 data. Our results demonstrate the value of high-resolution imagery data products for improved 
classification accuracy, particularly in estuarine systems with high ecological diversity and spatial heterogeneity. 
Likewise, this study highlights opportunities for future habitat mapping efforts within the research reserve system 
that leverage UAS technologies. 
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4.3.2.2.7 Imagery and Classification Outputs at Rush Ranch 
Graphic and tables from the imagery and multiple landcover classification (MLC) analysis are shown on the next 
several pages. 
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Figure 52: WV-2 (2-meter) natural color imagery 
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Figure 53: WV-2 (2-meter) MLC classification and accuracy assessment     

ClassValue C_1 C_2 C_3 C_4 C_5 Total U_Accuracy Kappa 
C_1 22 11 4 2 13 52 0.423076923 0 
C_2 5 22 5 1 6 39 0.564102564 0 
C_3 0 2 39 1 0 42 0.928571429 0 
C_4 3 6 1 46 0 56 0.821428571 0 
C_5 20 9 1 0 31 61 0.508196721 0 
Total 50 50 50 50 50 250 0 0 
P_Accuracy 0.44 0.44 0.78 0.92 0.62 0 0.64 0 
Kappa 0 0 0 0 0 0 0 0.55 
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  Figure 54: WV-2 (2-meter) close-up of image segmentation 
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Figure 55: WV-2 (0.4 meter) natural color imagery 
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 Figure 56: WV-2 (0.4-meter) MLC classification and accuracy assessment 

  
 
   

ClassValue C_1 C_2 C_3 C_4 C_5 Total U_Accuracy Kappa 
C_1 44 0 0 4 14 62 0.709677419 0 
C_2 1 33 5 1 3 43 0.76744186 0 
C_3 0 4 45 23 0 72 0.625 0 
C_4 1 3 0 22 1 27 0.814814815 0 
C_5 4 10 0 0 32 46 0.695652174 0 
Total 50 50 50 50 50 250 0 0 
P_Accuracy 0.88 0.66 0.9 0.44 0.64 0 0.704 0 
Kappa 0 0 0 0 0 0 0 0.63 
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Figure 57: WV-2 (0.4-meter) close-up of image segmentation 
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Figure 58: TerrAvion (0.12-meter) natural color aerial imagery 
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Figure 59: TerrAvion (0.12-meter) MLC classification and accuracy assessment 

  

ClassValue C_1 C_2 C_3 C_4 C_5 Total U_Accuracy Kappa 
C_1 44 3 0 0 25 72 0.611111111 0 
C_2 0 33 4 3 1 41 0.804878049 0 
C_3 0 0 41 6 2 49 0.836734694 0 
C_4 0 8 5 41 0 54 0.759259259 0 
C_5 6 6 0 0 22 34 0.647058824 0 
Total 50 50 50 50 50 250 0 0 

P_Accuracy 0.88 0.66 0.82 0.82 0.44 0 0.724 0 
Kappa 0 0 0 0 0 0 0 0.655 
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Figure 60: TerrAvion (0.12-meter) close-up of image segmentation 
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Figure 61: PrecisionHawk (.04-meter) UAS natural color imagery 
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Figure 62: UAS PrecisionHawk (.04-meter) MLC classification and accuracy 
assessment 

  
  

ClassValue C_1 C_2 C_3 C_4 C_5 Total U_Accuracy Kappa 
C_1 49 0 0 1 1 51 0.960784314 0 
C_2 0 45 1 0 4 50 0.9 0 
C_3 0 1 47 0 0 48 0.979166667 0 
C_4 0 2 2 48 0 52 0.923076923 0 
C_5 1 2 0 1 45 49 0.918367347 0 
Total 50 50 50 50 50 250 0 0 
P_Accuracy 0.98 0.9 0.94 0.96 0.9 0 0.936 0 
Kappa 0 0 0 0 0 0 0 0.92 
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Figure 63: PrecisionHawk (.04-meter) close-up of image segmentation 
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4.3.3 Lidar 
The overall pattern of the bare-earth lidar agrees with the expectations for the landscape, varying from near zero 
NAVD88 on the rivers to almost 70 meters in the hills (Figure 64).  

 
Figure 64. Bare-earth elevations from lidar at Rush Ranch 

Subtracting the highest points per 1-meter cell from the bare-earth, we can examine what the lidar shows for 
canopy and structures (Figure 65). The hills have low vegetation of dry grass. The marsh shows that the higher 
grasses are near the water bodies. The highest vegetation is the trees surrounding the buildings. 
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Figure 65. Canopy and structure heights derived from lidar at Rush Ranch 

 
 We used 62 bare-earth validation points to calculate the non-vegetated RMSEz accuracy as 0.047 meters. This 
easily meets the contract specifications of 0.10 meters. The RMSEz for the vegetated classes is shown in the graph 
(Figure 66) and table (Table 13) below. The graph only shows the classes with more than a few points. 
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Figure 66. Lidar RMSEz for lidar by vegetation type at Rush Ranch 

Table 13. Tabulation of lidar errors for Rush Ranch 

Class RMSE [m] Mean lidar - truth [m] N 

Ground 0.047 -0.003 62 

Juncus 0.287 0.264 25 

Typha 0.300 0.279 17 

S. americanus 0.387 0.369 16 

Salicornia 0.207 0.192 15 

S. acutus 0.304 0.276 12 

Bromus 0.109 0.066 8 

Grindelia 0.276 0.275 2 

Birdsbeak 0.023 0.023 2 

Thistle 0.154 0.119 2 

Phragmites 0.464 0.464 1 

Lepidium 0.324 0.324 1 

 
We expected that the marsh vegetation in Rush Ranch would be extremely difficult to penetrate with lidar, and this 
appears to be the case. With few exceptions, the RMSE is very close to the mean error, with the lidar above the 
ground truth. The lidar is likely returning from the top of the vegetation or from some point within the vegetation 
where the system cannot differentiate between the vegetation and the ground return. In the case of short dense 
plants such as Salicornia, the mean error is approximately the same as the height of the plants. For the taller (chest 
to head high) plants, such as S. acutus, S. americanus, Typha, and Phragmites, the mean error is deep within the 
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vegetation structure and may be an issue with the pulse width and signal response such that a signal 
approximately 30 centimeters from the ground cannot be differentiated from a signal from the ground. There were 
not sufficient holes in the vegetation for the pulses to get to the ground without a reflection within the plant 
structure. From visual observation in the field, this was not surprising, as these vegetation types create dense 
thickets and overlay dark, damp soils. 

4.3.4 Structure from Motion 
The point cloud derived from the imagery via the SfM process had significant issues. While the lidar point clouds 
had a range of values between 0 and 70 meters NAVD88, the SfM point cloud had a range from -183 to 271 meters 
(Figure 67). It seems likely that using the SfM-derived digital surface model (DSM) contributed to the horizontal 
error found in the imagery data and might explain the majority of the error. The SfM point cloud was generated for 
each of the imagery processing blocks. The point clouds were merged to generate the raster DSM below, partially 
obscuring the differences at block edges, which could be significant. A particularly egregious block is block 11 in 
the northwest. It has the full range seen in the SfM point cloud and considerably greater range than the rest of the 
blocks. 

 
Figure 67. Digital surface model (DSM) derived from the imagery SfM point cloud 
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To illustrate some of the issues, we compared the SfM-derived DSM to the lidar-derived DSM (Figure 68). The 
default color ramp covered such a large range that it was very difficult to see where good agreement might be. A 
color ramp was applied such that differences greater than five meters were solid blue or red while smaller 
differences were in yellow and green. This is still a far greater range than we would expect between the data 
sources, but it is evident that most of the area exceeds a five-meter difference. A profile was drawn through the 
data (yellow line in the figure) showing some of the extreme changes between image blocks. 
 

 

 

Figure 68. A profile is drawn on the difference between the SfM DSM and the lidar DSM in the upper panel and shown in the lower panel. The 
difference is colored such that red and blue are more than 5 meters from zero difference while greens and yellows are less than 5 meters apart. 
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We also drew a profile through the main ranch house area that included buildings and trees to compare the lidar 
and the imagery (see Figure 69). Here we can see the building peak height was in good agreement between the two 
at 18.18 meters in the lidar and 17.84 meters in the imagery-derived points. However, the trees do not agree. 
While we did not measure the tree heights during our fieldwork, the trees were significantly taller than the 
buildings. This is in agreement with the lidar, but the imagery-derived data show much lower trees. 
 

 

 

Figure 69. Comparison of a lidar (top) first surface profile through the Rush Ranch main compound and the same profile from the imagery-
derived elevation model (bottom) 

Overall, while the lidar data could be reasonably used to generate a canopy model, the SfM-derived elevation could 
not be combined with the lidar to provide anything meaningful, and generally was not a useful product. It is 
unclear to us why this is the case, as we have heard other reports of good success with SfM. Possibly this is a case of 
too much homogeneity combined with vegetation moving in the wind.  

5 CONCLUSION 
There were many changes during the course of the project that made some of the originally proposed research 
impossible. The intent and the explanations are as follows: 

● We had proposed to fly each reserve twice to allow an analysis of repeatability of the UAS systems and 
provide two seasons of imagery. Cost constraints during contracting changed this to flying only one 
reserve, San Francisco Bay, twice. The higher complexity and expected greater seasonal signal were the 
primary criteria in selecting San Francisco Bay Research Reserve as the repeated reserve. Delays in 
obtaining a certificate of authorization and birding closures resulted in our first opportunity to fly the 
intended marsh with the correct vegetation state in September 2017, approximately 16 months from the 
start of the project. This left us with too little time to fly the marsh twice within the grant period, so we 
enlarged the area and flew it only once. Even if the grant period was not a constraint, we had no assurance 
that the marsh would not remain closed in the spring and early summer for bird nesting. 
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● We proposed to fly the same platform and sensor each time to evaluate the system in different ecosystems. 
However, the technology is moving so fast that it became apparent that we would be evaluating old 
technology by the time we flew the last research reserve. We opted to let the contractor select their most 
appropriate technology at the time of each flight. This resulted in increasingly better data as the 
ecosystems became more complex, simply because of the order of flights. While we lost the ability to 
compare the ecosystems based on the same technology, we gained insight into the speed of advancement 
and additional benefits of letting the private sector stay abreast of technology. 

● We proposed to evaluate the imagery for use in habitat mapping with the intent to compare to the existing 
habitat maps. We knew we could only do that at Grand Bay and San Francisco Bay Research Reserves, since 
the Jacques Cousteau Research Reserve did not have a habitat map completed. However, the Grand Bay 
map was found to have enough questions about its quality that it was deemed unreliable for that 
comparison. Instead, we could only compare segmentation results with the same process used on manned 
or satellite imagery without something to supply a “truth,” limiting the analysis. 

 
We were able to test the spatial accuracies of the data. For both imagery and lidar, we found that ground control 
was required to attain the expected accuracies. For the imagery, we also found that the size of the area was 
important for attaining the required accuracy. If the area had to be broken into blocks for processing, whether for 
data volume or illumination consistency, each block needed to have enough control. In the San Francisco Bay 
Research Reserve, breaking into blocks resulted in approximately three to four control points per block, which was 
insufficient for attaining the required spatial accuracy. The lidar data did not appear to have this dependency. 
Analysis of the elevation data derived from the imagery (using commercial structure from motion algorithms) 
indicated poor results in all cases and showed a lack of consistency. Possible explanations for these results include 
homogeneous landscape lacking clear features to tie images and movement of the vegetation in the wind between 
frames, particularly sidelap. It also indicates that structure from motion algorithms might have difficulty 
identifying coincident tie points in and on vegetation, and that vegetation density and camera look angles play 
variable roles in the relative success of this approach. Further research may be required to look at performance in 
an urban setting versus grasslands. 
The poor results for imagery-derived elevation prevented an analysis of the possible benefits of combining lidar 
and imagery for vegetation height studies. The lidar appeared to do a better job than the imagery in capturing the 
tops of the vegetation, contrary to expectations. The lidar also performed very well when control was included in 
the acquisition, and exceeded our expectations for both accuracy and performance in dense marsh vegetation. 
Understanding the limitations of SfM and the environments where poor results are likely may be an important next 
step to avoid selecting the wrong technology in future work. 
The analysis of imagery suitability and comparative advantage for habitat mapping had some shortcomings, but 
generally showed that the higher resolution imagery allowed for better and more detailed segmentation in the 
initial object creation step. The primary shortcoming was the lack of manned imagery that was both temporally 
similar to the UAS imagery and representative of the higher resolutions possible. This may have put the manned 
imagery at more of a disadvantage than would be realistic and essentially compared what you could get by paying 
for UAS flights versus what was available at no cost. However, it did show that we could use the UAS imagery for 
habitat mapping and that it did a good job in the initial automated step. As UAS imaging manufacturers continue to 
integrate ambient illumination sensors with downward-looking multispectral sensors, we expect the illumination 
issues to improve and more consistent radiometrically balanced imagery to become predictable. 
We found that the mosaicked imagery from the MicaSense camera did very well in our resolving power test. Bars of 
approximately 2.5 centimeters (1 inch) width were resolved in imagery with 4 centimeter pixels, exceeding our 
expectations. This adds to our confidence in using this imagery where we need to resolve small targets. However, 
we also noticed the potential for blurring in the marsh grasses due to movement. Higher speed cameras would be 
required to solve that problem. 
One of our objectives was to evaluate the costs for UAS collections compared to manned flights. Conducting this 
comparison was problematic for two reasons. First, what we paid for the UAS contract did not fully cover the costs 
incurred, since the private sector contributed an unknown amount. This would not be the expected mode of 
operation. Second, we did not pay for manned flights and we can only use previous experience regarding costs. On 
average, the UAS collections cost us over $20,000 per square mile collected for combined lidar and imagery, with 
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the lidar processing contributing a significant portion of that cost. For a manned flight, we might expect $15,000-
$20,000 for mobilization costs. The per square mile costs for lidar (QL1) and imagery (4-band, 6-inch) are in the 
neighborhood of $300 and $100 respectively, making the mobilization the dominant cost for a small area. Those 
numbers are very rough and the products are not directly comparable, but they suggest that in areas somewhere 
around a square mile, the costs are comparable between manned and UAS. As the area shrinks, the UAS is favored. 

5.1 LESSONS LEARNED 
We learned a number of valuable lessons during the course of this research. These were not part of the original 
research goals, but they became evident as we proceeded.  

● Attaining the positional accuracy needed at UAS imagery resolutions that would support change analysis 
requires control with photo-id points. While standard procedure to mappers, the Jacques Cousteau data 
reinforced the point. Continued advancements in direct geopositioning may soon allow conducting UAS 
data acquisitions without control, though this will need to be rigorously tested before becoming standard 
practice. 

● Trying to create a 4-band (red, green, blue, NIR) image by combining imagery from two cameras that were 
not flown simultaneously results in a product that is difficult to use for computational analysis. Anything 
that moved is displaced between the bands. This is particularly problematic with shadows and mobile 
objects. It is also problematic for objects that have considerable vertical structure relative to the sensor 
height, as the orthorectification process may not adequately adjust for differing view angles. 

● The acquisition duration and number of images may put a limit on the reasonable area of coverage where 
UAS can make sense. Creating color-balanced mosaics may require capturing the amount of ambient light 
with each image. Setting stringent acquisition mission parameters such as sun angle, cloud cover, airspeed, 
flight AGL, frontlap, and sidelap may help improve product quality, but may also be too restrictive for 
efficiently covering large areas. Processing requiring seven months and lots of cloud processing after five 
days of collection for two square miles is neither cheap nor fast. 

● With the possible exception of very small areas, UAS does not break the adage about “cheap, fast, and good; 
pick up to two.” As the area grows, the small footprint of UAS becomes a serious problem, potentially 
making it more expensive, slower, and affecting quality. Our areas varied in size from the small 7-acre 
polygon at Grand Bay Research Reserve to the 2 square mile (1,280 acre) site at San Francisco Bay 
Research Reserve. Grand Bay included areas sized 7, 29, 50, and 91 acres and was the fastest delivery of 
any site. It also had the best spatial accuracy. It still required a couple months. 

● The industry is in a rapidly evolving mode. New platforms, sensors, and processing approaches are 
becoming available all the time. Conclusions drawn from one experience, including this one, may have a 
limited shelf life. 

● Private industry works hard to be a good partner to the public sector. This project was research for both 
sectors and pushed the bounds of what they had done previously. While not all the products met the 
hoped-for specifications and the turn-around times were longer than originally anticipated by anybody, the 
private sector put in significant resources of their own to make the best product they could under the 
conditions. They brought options to the table and discussed the pros and cons, involving the public sector 
in the decisions regarding platforms and sensors for a particular job. Had we taken the route of buying the 
platforms and sensors available at the start of this project and doing this project ourselves, we would have 
had an inferior product that required much more of our staff time. Although not every product met the 
specification, nor did we expect them too, it was a very successful public–private partnership. 

● The combination of FAA regulations and the need to protect endangered species can lead to narrow or 
nonexistent operating windows. The allure of the UAS as a rapid deployment technology has to be 
tempered by the other factors that are not technology related. 
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7 GLOSSARY 
COA certificate of authorization 
DEM digital elevation model 
DSM digital surface model 
EASC Eastern Administrative Support Center 
FAA Federal Aviation Administration 
GBNERR Grand Bay National Estuarine Research Reserve 
GPS Global Positioning System 
JCNERR Jacques Cousteau National Estuarine Research Reserve 
MPiA multiple pulses in air 
NAVD88 North American Vertical Datum of 1988 
NERRS National Estuarine Research Reserve System 
NGS National Geodetic Survey 
NIR near infrared 
NOAA National Oceanic and Atmospheric Administration 
NPS nominal post spacing 
NSSDA National Standard for Spatial Data Accuracy 
OCM Office for Coastal Management 
PH PrecisionHawk 
QSI Quantum Spatial, Incorporated 
RGB red green blue 
RMSE root mean square error 
RMSEz vertical root mean square error 
RTK real time kinematic 
SFBNERR San Francisco Bay National Estuarine Research Reserve 
SfM structure from motion 
TIN triangulated irregular network 
TRL technology readiness level 
UAS unmanned aircraft systems 
UAV unmanned aerial vehicle 
USAF United States Air Force 
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