NOAA UAS Program Demonstrating UAS Capabilities in the Rim of the Pacific Exercise

Northwest Hawaiian Islands Papahanaumokuakea Marine National Monument 2014 & 2015

Todd Jacobs (NOS), Charles Littnan (PIFSC), David Graham NOAA – Office on National Marine Sanctuaries

Operational Goals & Science Objectives

Implement ONMS UAS Strategy & Support NOAA's Missions with Inter-Agency Partners

- Requirements & Capture Analysis
- Multi-Agency/Multi-Aircraft/Multi-Mission Value Tree
- Accomplishments: Requirements Capture & Ops Assessment
- Multi-Platform Operational Assessment
 - ✓ Ikhana (2014)
 - ✓ Puma-AE (2014-15)
 - ✓ APH-22 (2015)
 - ✓ NOAA R/V with UAS Support (2012 to Present)
 - ✓ NWHI 2014 R/V Hi'ialakai
 - ✓ NWHI 2015 *R/V Oscar Elton Sette*

Requirements Study and Analysis of Alternatives informed Platform, Sensor and Application Decisions

Observation Requirement Crosswalk

<u>TPIO provided NOSIA Input for NWHI / HI 1 May</u>

NOAA Unmanned Systems Program Office | Puma / Ikhana

NOAA Unmanned Systems Program Office | Puma / Ikhana

Accomplishments: Requirements Capture & Ops Assessment

Implement ONMS UAS Strategy & Support NOAA's Missions with Inter-Agency Partners

Area	Priority Objectives	Puma	Ikhana	TBD
Maritime Domain Awareness	 Observe non-cooperative vessel traffic in the monument Evaluate the ability to support hazard analysis and enforcement 	<i>J</i> <i>J</i>	1	1
Marine Debris	 Support planning for the fall marine debris removal cruise Evaluate the ability to locate marine debris ashore, in reefs and at sea Evaluate ability to improve efficiency of field operations 	5	<i>s</i>	1
Hawaiian Island Monk Seal	 Count seals at haul-outs Evaluate ability to monitor haul-outs when human observers not present Evaluate ability to improve efficiency of field operations 	<i>J</i> <i>J</i>	5	1
Green Sea Turtles	 Evaluate ability to observe night-time nesting and hatching events 			1
Cetaceans	Observe cetaceans of opportunityEvaluate ability to survey populations	<i>J</i> <i>J</i>	<i>J</i>	
Birds and Vegetation	 Estimate soil moisture content on Nihoa island Evaluate ability to monitor bird communities when observers not present Evaluate ability to improve efficiency of field operations 			\$ \$ \$
Terrestrial Habitat	 Determine field camp conditions before deployment Evaluate ability to observe dynamic changes in terrain 	1	1	1

Initial objectives refined by early feedback from demonstrations to focus on high-value future capabilities * Numerous 2014 Objectives were accomplished during the 2015 campaign with advanced payloads.

Puma at 4,377 ft. slant range

NOAA Unmanned Systems Program Office | Puma / Ikhana

Ikhana at 29,162 ft. slant range

Accomplishments: Operational Assessments & Transition

System Spiral Development Lead to additional Requirements Capture

2015 Objectives:

- ✓ Surveys for Hawaiian Monk Seal
- ✓ High resolution mapping of remote atolls for baseline
- ✓ Surveys for marine debris removal teams (lost fishing nets)
- Collecting example data for bird surveys
- Collecting example data for sea turtle surveys

Observation Strategy Advancements were made with Inter-Agency & Industry Partners

UASOPO Program Review March 8-10, 2017

Transition: Research > Development > Transition (RL Movement) Implement ONMS UAS Strategy & Support OAA's Missions with Inter-Agency Partners 145 Advance Payload Video & Lidar Survey

Requirements Capture moves the readiness levels towards an operational capability Marine & Wildlife Monitoring (Including Marine Debris), Advanced Payloads – RL 8

UASOPO Program Review March 8-10, 2017

Additional Partnerships (who have shared in our successes) In close cooperation with the NOAA Line Offices, Government, Industry & Academia

Joint Operations have increased Maritime Services Interoperability Puma-AE owned and operated by every maritime service – Readiness Level 9

Q

Science & Technical Challenges and Solutions These are from 2014 and 2015 missions

- Needed a full year to plan a project the scale of Ikhana
- Need Puma improvements higher resolution sensor, operate in winds over 25 kts, net capture system
- Need to work regulatory relief for beyond-line-of-sight Puma operations
- Can't afford to chase an aircraft like Ikhana
- Need to understand the airspace evolution and continue to build confidence and understanding
- Need to understand SATCOM issues. NASA working on other communications options, like Inmarsat
- Consider a dedicated NOAA mission. Need more days to get good weather. Constrained by doing it "on the cheap."
- Understand transportation issues. Might be worth developing a smaller footprint alternative to the 32,000# ground station.
- This was a bit of a solution looking for a problem. Look at optimizing a system for specific missions.
- Consider other sensors, either NOAA or Science owned.
- Data analysis is a bigger task than anticipated. Need to engineer the right tools and procedures.
- ✤ AOC ability to support small UAS operations is limited.

UASOPO Program Review March 8-10, 2017

Description of the second state of the second

10

Future Direction & Operations (Post 2014 & 2015 Mission) Implement ONMS UAS Strategy & Support NOAA's Missions with Inter-Agency Partners

- Operating sUAS BVLOS possibly with transponder (Mode C/ADS-B)
- Need for spontaneity in UAS operations real-time response
- Remoteness and safety drives need for unmanned systems deployment
- Other Agency Partners (Army Grey Eagle, DHS)
- Alternative Ship or Island Based Platforms (Small VTOL)
- Alternative Long-Range Platforms (Flexrotor, Scan Eagle)

Deployment of UAS Assets for NMFS and ONMS for Marine, Shore & Wildlife Monitoring (Including Arctic), Advanced Payloads – RL 8

UASOPO Program Review March 8-10, 2017