SHOUT Cost Study/Operational Assessment

Philip M. Kenul NOAA UASPO March 8, 2017

UASPO Program Review March 8-10, 2017

SHOUT Objectives

- Objective 1 Quantify significance of unmanned observations to high impact weather prediction through Observing System Experiments (OSE) Observing System Simulation Experiments (OSSE).
- Objective 2 Quantify the <u>cost</u> and operational benefit of unmanned observing technology for high impact weather prediction through detailed analysis of life-cycle operational costs and constraints versus scientific benefit.

SHOUT 2016 Hurricane Rapid Response

Efficiency Goals to Reduce Cost of Operations

- Optimize Tropical Cyclone targeting in 2016
- Mitigate the risks associated with a short campaign
- Develop approach to staffing and operations not previously used during Global Hawk missions
 - reduced staffing during operations for mission science and instrument teams
 - release staff during no fly days when feasible
 - do not deploy until target identified
- Demonstrate Platform Flexibility
- Advance transition to operations

Operations

- Aug 1- Sept 30 2016 Mission Ready
 - Rapid Response Standby (2x period of operations over SHOUT 2015)
- On call at AFRC until target identified
 - Option to fly targets in Gulf of Mexico, western Caribbean, and western North Atlantic from AFRC until deployment to WFF
- No deployment to WFF until target identified
 - Cost savings for travel, personnel
 - Increase productivity

Cost Analysis/Operational Assessment

- 2015 SHOUT Cost Report examines both startup and annual costs
- 2016 Shout Cost Report revised operating cost for project planning and execution based on longer term costing information
 - Based on recommended NASA/NOAA partnership
- Improved platform performance/reliability since HS3
- Staffing efficiencies reduced costs (Per-diem/salaries)

Cost Analysis/Operational Assessment

- Demonstrate future operational model for Global Hawk deployment (as opposed to research campaigns)
- Operational model adopted during the HRR campaign
 - employ a very different operating model from past experiments
 - maximize the opportunity of capturing suitable scientific targets
 - reduce costs
 - improve efficiencies

Next Steps

- The final evaluation report combining the data impact and cost and operational feasibility studies will be delivered by 30 June 2017
- Results of this project will be used by NOAA to determine whether or not development of a high altitude UAS observing strategy should continue as a satellite data gap mitigation tool