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Abstract Remote sensing has become an increasingly viable tool for characterizing fluvial systems. In
this study, we used field measurements with a 1.6-km reach of the upper Sacramento River, CA, to evaluate
the potential of mapping water depths with a range of platforms, sensors, and depth retrieval methods.
Field measurements of water column optical properties also were compared to similar data sets from
other rivers to provide context for our results. We considered field spectra, a multispectral satellite image,
hyperspectral data collected from conventional and unmanned aircraft, and a bathymetric LiDAR and
applied a generalized version of Optimal Band Ratio Analysis and the K nearest neighbors regression
machine learning algorithm. Linear, quadratic, exponential, power, and lowess Optimal Band Ratio
Analysis models enabled flexible curve-fitting in calibrating spectrally based quantities to depth; an
exponential formulation avoided artifacts associated with other model types. K nearest neighbors
regression increased observed versus predicted (OP) R2 values, particularly for the satellite image; we also
found that preprocessing of satellite images was unnecessary and that a basic data product could be used
for depth retrieval. Bathymetric LiDAR was highly accurate and precise in shallow water, but a lack of
bottom returns from areas greater than 2 m deep resulted in large gaps in coverage. The maximum
detectable depth imposes an important constraint on fluvial remote sensing and a hybrid approach
combined with field surveys of deep areas might be a more realistic operational strategy for bathymetric
mapping. Future work will focus on scaling up from short reaches to long river segments.

1. Introduction
Spatially distributed information on water depth is vital to studies in fluvial geomorphology and stream
ecology and also plays a central role in many river management applications (e.g., Benjankar et al., 2018),
particularly those that involve in-stream habitat assessment (e.g., McKean et al., 2008; McKean & Tonina,
2013). Given the difficulty and expense of measuring depths via conventional field methods, remote sensing
of river bathymetry has become an increasingly appealing alternative. The development of new sensors, plat-
forms, and algorithms, along with their greater availability and ease of use, has spurred significant progress
in fluvial remote sensing. Entwistle et al. (2018) reviewed these advances and reiterated the claim that “the
time for more widespread application of river remote sensing techniques is now” (Marcus & Fonstad, 2010,
p. 1867). Moreover, Entwistle et al. (2018) exhorted the research community to use these methods to gener-
ate “new insights and ideas on fluvial form and function, … challenging paradigms and moving the science
forward.” This goal has become more realistic as the cost of acquiring remotely sensed data, particularly with
unmanned aircraft systems (UASs), has decreased. Although a certain degree of optimism is justified, further
testing and refinement of remote sensing methods is needed to optimize our ability to infer river information
and to define realistic expectations. Such a pragmatic approach would facilitate informed, effective use of
these rapidly evolving technologies. More specifically, direct, comparative evaluations conducted in a range
of fluvial environments become more valuable as the number of instruments and means of deploying them
continues to grow (Legleiter et al., 2016). In this study, we assess the potential to map water depths along
a short reach of a large (>100 m wide) gravel-bed river with a number of different sensors, platforms, and
depth retrieval algorithms. Although our focus herein is on estimating depth, bed elevation is the variable
of interest for many applications (Carbonneau et al., 2011; Kammel et al., 2016). Whereas depth depends on
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discharge, bed elevation is independent of flow stage and is the primary input variable required for hydro-
dynamic modeling (e.g., Bovee, 1978; Leclerc et al., 1995; Pasternack et al., 2004). Submerged topography
can be derived from a depth map via a relatively simple workflow: Given an independent source of infor-
mation on water surface elevation, such as conventional near-infrared (NIR) LiDAR, image-derived depth
estimates can be subtracted from water surface elevations to obtain bed elevations (e.g., Legleiter, 2012). In
this paper, we use the term bathymetry to refer to water depth, whereas other authors might use bathymetry
to refer to bed elevations.

One of the longest-standing applications of remote sensing to rivers is estimation of water depth from passive
optical image data, building upon the foundation established in marine environments. For example, early
work by Lyzenga (1978) formed the basis for some of the first studies to explore the use of airborne multispec-
tral image data for retrieving river depths (Lyon et al., 1992; Winterbottom & Gilvear, 1997). More recently,
Legleiter (2013) showed that reasonable depth maps could be produced from aerial photographs publicly
available through the National Agricultural Imagery Program. Similarly, the proliferation of high-resolution
commercial satellites over the past 10–15 years has opened up the possibility of mapping river bathymetry
from space (Legleiter & Overstreet, 2012). Because satellites can be readily tasked and provide images cover-
ing a greater spatial extent, this type of data is conducive to larger-scale investigations of long river segments
or entire watersheds (e.g., Hugue et al., 2016). This capability is critical for realizing the “riverscape” vision
articulated by Carbonneau et al. (2011) and understanding how, for example, various fish species utilize dif-
ferent portions of a river system throughout their life histories (Fausch et al., 2002). Dietrich (2016) explored
the potential for this kind of valley-scale (tens of kilometers) riverscape mapping using remotely sensed
data acquired from a helicopter. At the other end of the spectrum of spatial scales, UAS-based mapping has
emerged as a convenient, economical means of characterizing channel morphology and in-stream habitat
for short reaches, particularly with structure from motion (SFM) photogrammetric techniques that translate
sequences of photographs into detailed, accurate digital elevation models (DEMs) and orthorectified images
(e.g., Fonstad et al., 2013; Smith et al., 2016). Woodget et al. (2015) and Dietrich (2017) also have shown that
data from UAS and SFM can provide reliable depth estimates in clear, shallow water. Finally, an alternative,
active remote sensing approach to mapping river bathymetry involves newly developed airborne LiDAR sys-
tems equipped with green-wavelength lasers that, unlike standard NIR systems, can penetrate through the
water column to the bed under certain conditions (e.g., Kinzel et al., 2013; Legleiter et al., 2016; McKean
et al., 2008); Mandlburger et al. (2016) also reported initial results from a bathymetric LiDAR deployed from
a UAS. Whereas previous studies primarily have examined small- to medium-sized, relatively shallow rivers,
this paper evaluates the potential to estimate water depths in a larger channel, on the order of 100 m wide
with depths in excess of 4 m, from various types of remotely sensed data.

In addition to the numerous sensors and platforms now available, a variety of algorithms have been
developed for remote sensing of river bathymetry. For passive optical image data, depth retrieval requires
establishing a relationship between reflectance and water depth. A traditional, still common approach
involves relating georeferenced pixel values to colocated field-based depth measurements via regression
(e.g., Winterbottom & Gilvear, 1997; Williams et al., 2014). Although this strategy is readily implemented,
any regression-based method requires field observations from as close as possible to the time of image acqui-
sition. The difficulty of coordinating ground-based and airborne data collection motivated the development
of alternative techniques based on hydraulic principles (Fonstad & Marcus, 2005; Legleiter, 2015), probabil-
ity concepts (Legleiter, 2016), or radiative transfer modeling (e.g., Kerr & Purkis, 2018). Another limitation
of depth retrieval via simple linear regression is that the total at-sensor radiance depends not only on depth
but also the reflectance of the streambed, the optical properties of the water column, and any light reflected
from the water surface; atmospheric effects can further contaminate the radiance signal (Legleiter et al.,
2004). As a result, depths inferred via regression can be influenced by any or all of these confounding factors,
particularly variations in bottom reflectance.

A more robust approach attempts to account for these effects by evaluating band ratios as potential predic-
tors of water depth. The Optimal Band Ratio Analysis (OBRA) method introduced by Legleiter et al. (2009)
considers all possible band combinations and identifies the pair of wavelengths that provides the strongest
relationship between an image-derived quantity, X , and flow depth, d. Initial testing and subsequent appli-
cation of this approach demonstrated that OBRA yields reliable depth estimates in the presence of variable
substrates, water column characteristics, and water surface textures (Legleiter et al., 2009, 2011, 2016). This
type of spectrally based remote sensing, however, is only feasible under certain, fairly restrictive conditions:
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The water must be clear and relatively shallow, and the channel must be visible from above, unobstructed by
riparian vegetation or shadows. Although originally designed for continuous field spectra or hyperspectral
image data, which allow wavelengths highly sensitive to variations in depth to be identified and exploited,
OBRA also has been applied successfully to aerial photographs and multispectral satellite images with fewer,
broader bands (Legleiter & Overstreet, 2012; Legleiter, 2013).

More recently, Legleiter et al. (2018) introduced an iterative version of the algorithm, called OBRA of Pro-
gressively Truncated Input Depths (OPTID), intended to further optimize the X versus d relation by limiting
the range of depths used for calibration. By taking subsets of the original field data, OPTID aims to con-
struct a calibration data set conducive to accurate depth retrieval. Although this type of sampling is an
important aspect of the overall calibration process, improving the model selection and curve-fitting compo-
nents of this process also could yield more reliable depth maps. For example, Legleiter et al. (2009) observed
that using a linear X versus d relation can lead to negative depth estimates along shallow channel margins
and under-predictions of depth in pools. Following Dierssen et al. (2003), Legleiter and Overstreet (2012)
showed that incorporating an X2 term in the regression could improve depth retrieval in deeper areas, but
Legleiter et al. (2018) pointed out that quadratic OBRA can lead to minimum image-derived depths greater
than the shallowest depths observed in the field. Considering alternative functional forms for the X versus
d relation could mitigate these issues and thus enable more accurate depth retrieval across the full range
of depths present in the river of interest. In this study, we generalize the OBRA framework by considering
linear, quadratic, exponential, and power models, as well as a scatter plot smoothing technique known as
lowess (Cleveland & Devlin, 1988; Dilbone et al., 2018). We also apply a nonparametric machine learning
technique known as K nearest neighbors regression (KNN; Kibele & Shears, 2016) and compare these pas-
sive optical techniques to a bathymetric LiDAR instrument. Finally, by reporting in situ measurements of
water column optical properties from our field site on the Sacramento River, we provide a quantitative, phys-
ical basis for understanding a key constraint on remote sensing of river bathymetry: the maximum depth
detectable by a particular sensor.

Interest in remote sensing of rivers continues to increase, with an expanding user community that now
encompasses not only academic researchers but also agency scientists and resource management profes-
sionals. As applications of this new technology become more widespread, information on the relative merits
and limitations of various approaches is critical to ensuring efficient, cost-effective use of remote sensing. In
keeping with our overall goal to advance fluvial remote sensing by developing and testing new techniques
for bathymetric mapping, this study focused on the following research objectives:

1. Make field measurements of water column optical properties and compare observations from the Sacra-
mento River to data from other sites to establish a physical foundation for understanding controls on
depth retrieval performance.

2. Introduce a new version of OBRA that generalizes the calibration process by considering several func-
tional forms for describing the relationship between the image-derived quantity X and the flow depth d:
linear, quadratic, exponential, power, and lowess models; we also apply a nonparametric KNN technique
to infer depths from image data.

3. Evaluate the potential to measure the bathymetry of a large gravel-bed river via multiple remote sensing
approaches, including multispectral satellite images, hyperspectral data acquired from manned aircraft
and UAS, and water-penetrating green LiDAR.

4. Quantify depth retrieval performance across a range of depths by examining the distribution of depth
retrieval errors spatially and as a function of depth and by performing generalized OPTID.

2. Methods
2.1. Study Area and Field Data Collection
The Sacramento River is located in California's Central Valley and is the state's largest river, with a drainage
area of 6.8 × 104 km2. The river is a vital source of water for urban and agricultural uses and supports three
runs (populations) of Pacific salmon listed under the Endangered Species Act (Moyle et al., 2017). Flow in
the upper Sacramento is regulated by Shasta and Keswick Dams and the mean annual discharge measured
at the U.S. Geological Survey (USGS) gage (11377100) near Red Bluff, CA, since dam closure in 1964 has
been 357 m3/s. These two dams are migration barriers for salmon and prevent access to historical habitat
in upstream cold-water tributaries. As a result, salmon now spawn and rear in the reaches downstream of
Keswick Dam and dam releases must meet a range of water management requirements. Several decision
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Figure 1. (a) Location of the upper Sacramento River in northern California, USA. (b) Image of the study reach at the
Cottonwood Creek confluence acquired from a small unmanned aircraft system, courtesy of Alicia Amerson of
AliMoSphere. (c) Compact Airborne Spectrographic Imager hyperspectral image with terrestrial areas represented in
grayscale using a near-infrared band (744 nm) and the in-stream portion of the image displayed as a color composite
with bands centered at 687, 573, and 473 nm as red, green, and blue, respectively. The black triangle symbols overlain
on the image represent the location of field measurements of water column optical properties, and the rectangle
indicates the location of the image shown in (b). (d) Near-infrared LiDAR topography with hydroflattened
water-surface elevations overlain by field-based depth measurements from 12 ADCP/echo sounder cross sections.
ADCP = acoustic Doppler current profiler.

LEGLEITER AND HARRISON 2145



Water Resources Research 10.1029/2018WR023586

Figure 2. (a) Map of field-based depth measurements made by wading shallow channel margins and deploying an
acoustic Doppler current profiler and echo sounder from a jet boat along multiple passes of the 10 cross sections
encompassed by the unmanned aircraft system-based hyperspectral image. (b) Histogram and summary statistics for
the composite, cross-calibrated depth data set.

support tools have been developed to optimize these complex water operations, including coupled models
of flow and water temperature (Danner et al., 2012; Pike et al., 2013) and salmon bioenergetics (Dudley,
2018). These tools require accurate river bathymetry, which to date has been surveyed using boat-based
hydroacoustic methods with a mean cross-section spacing of approximately 500 m (Pike et al., 2013). Ongo-
ing efforts to evaluate in-stream habitat conditions and identify restoration targets on the Sacramento rely
upon high-resolution topo-bathymetric data, creating a compelling need to evaluate various approaches for
remote sensing of river bathymetry.

To pursue this objective and facilitate a large-scale habitat inventory for winter-run Chinook salmon,
remotely sensed data were acquired for approximately 112 km of the upper Sacramento near the city of
Redding, California. In this study we focused on a 1.6-km reach centered on the confluence with Cotton-
wood Creek (Figure 1a). Located in an agricultural landscape with riparian forest adjacent to the channel,
this reach has a gravel bed, a slope of 0.00097, a mean wetted width of 111 m, and a mean depth of 1.8 m.
The study area features a single, large meander bend, with Cottonwood Creek entering from the right bank
(i.e., from the west) near the apex and a bluff rising above the river as the channel curves to the left. Field
data collection and acquisition of remotely sensed data occurred under base flow conditions; the discharge
measured 21 km downstream at USGS gaging station 11377100 remained steady at 270 m3/s throughout
September 2017, when the airborne and UAS-based and hyperspectral images and bathymetric LiDAR were
collected. The discharge dropped to 237 m3/s before the satellite image data were acquired on 18 October,
but this reduction in flow would have produced only a minor decrease in depth. The Sacramento River was
slightly turbid during the study, with a pale green color, whereas the small amount of water in Cottonwood
Creek was very clear and appeared much darker at the confluence of the two streams (Figures 1b and 1c).

The various data sets used in this study are available from the USGS ScienceBase catalog via a landing page
with links to seven individual data releases (Legleiter & Harrison, 2018). Only a brief overview of our field
methods is provided here but additional detail is included in the metadata associated with each data release.
We collected field-based depth measurements from a jet boat and by wading. The wading surveys involved
using real-time kinematic (RTK) GPS receivers to record water-surface elevations (WSEs) along the edge of

LEGLEITER AND HARRISON 2146



Water Resources Research 10.1029/2018WR023586

the channel and bed elevations in shallow areas safely accessible from the bank; depths were calculated by
subtracting each bed elevation measurement from the nearest WSE point. These depth measurements were
obtained by recording WSE points every 2–5 m along the water's edge and then wading out into the channel
to survey an additional 5–15 bed elevations. The field measurements of WSE did not cover the entire reach
and were used only for calculating depths from the wading surveys in shallow areas, not for deriving depth
information from LiDAR data, as described below.

For the more extensive, deeper portions of the channel, we used the boat to survey 12 cross sections spaced
approximately every 135 m along the river (Figure 2a), making 5–10 passes back and forth across the chan-
nel at each cross section. Ten of these cross sections were encompassed by the UAS-based hyperspectral
image, the remotely sensed data set with the smallest spatial extent, and we only used data from this sub-
set of the field survey. Depths were recorded using two different instruments: an acoustic Doppler current
profiler (ADCP) and a single-beam echo sounder. Each sensor made a measurement once per second as the
boat traversed the channel, resulting in a mean point density of 17.56 points per meter of distance along
a cross section, with a range from 10.62 to 23.20 points per meter among the 10 cross sections. The spa-
tial locations of the depth measurements were obtained with a differential GPS included as part of the
ADCP instrument package, which provided a spatial accuracy on the order of 15–20 cm, and with an RTK
GPS receiver coupled to the echo sounder, which provided a typical spatial accuracy of 2–3 cm. To ensure
consistency between the two instruments, the ADCP- and echo sounder-based depth measurements were
cross-calibrated using points that were located within a distance of 0.5 m of one another. We quantified
the error associated with these depth measurements by calculating the standard deviation of the depths
recorded at all other points within 0.5 m of each individual point. These depth standard deviations averaged
0.037 ± 0.034 m (mean ± standard deviation) over the 10 cross sections, implying that depth measurement
errors were typically less than 4 cm. The resulting, composite (i.e., wading-based and boat-based) data set
consisted of over 19,000 individual depth measurements and was approximately normally distributed with
mean and maximum depths of 1.77 and 4.2 m (Figure 2b). We used the original depth measurement points
for calibration and validation of remotely sensed depth estimates rather than producing a continuous, grid-
ded surface representation to avoid introducing any additional uncertainty associated with interpolating a
bathymetry (Conner & Tonina, 2014; Glenn et al., 2016).

Optical properties of the water column exert a primary control on the feasibility of mapping river bathymetry
via remote sensing and are influenced by suspended and dissolved constituents such as sediment and
organic matter. More specifically, the physical foundation for estimating water depth from various kinds of
remotely sensed data is the attenuation of light with distance traveled through the water column, whether
the light originates from the sun for passive optical images or from a laser for LiDAR. To better understand
how radiative transfer processes influence depth retrieval performance across a range of river environments,
we collected field data on water column optical properties from our study area on the upper Sacramento and
compared these measurements with similar data sets from six other streams where remote sensing investi-
gations have been performed: the Deschutes River in Oregon (Legleiter et al., 2018), the Niobrara River in
Nebraska (Dilbone et al., 2018), the Snake River in Wyoming, and the Colorado and Blue Rivers and Muddy
Creek at their mutual confluence in Colorado (Legleiter et al., 2016).

To quantify radiative transfer processes independent of illumination and viewing geometry, we used a WET
Labs ac-s to measure two inherent optical properties (IOPs): the beam absorption and beam attenuation
coefficients a(𝜆) and c(𝜆), where 𝜆 denotes wavelength. These data consist of 81 contiguous bands span-
ning the region from 400 to 747 nm with a 4-nm sampling interval. The attenuation so critical for depth
retrieval is the combined result not only of absorption but also scattering of light. This concept is expressed
mathematically as c(𝜆) = a(𝜆) + b(𝜆), where the scattering coefficient b(𝜆) can be further decomposed
into a backscattering coefficient bb(𝜆) that describes radiation redirected into the hemisphere from which
the incident beam approached (i.e., back toward the detector in a remote sensing context). This scattered
light imparts a volume reflectance to the water column itself and thus defines a river's color and level of tur-
bidity. We used a WET Labs EcoTriplet to measure the backscattering coefficient bb at a single wavelength
(700 nm). The same basic measurement also was used to obtain values of turbidity, a more common metric
of water clarity that is not a true IOP but is widely used in monitoring programs (Davies-Colley & Smith,
2001). In addition, the EcoTriplet measured the concentrations of two optically significant constituents of
the water column: chlorophyll and colored dissolved organic matter. Another key constituent is suspended
sediment, the concentration and particle size of which we measured with a Sequoia Scientific LISST 100-X;
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Table 1
Summary of Remotely Sensed Data Sets

Height Pixel size Wavelength(s)
Acquisition dates Data type Sensor (km) (m) Bands (nm)
18 Oct. 2017 Satellite multispectral WorldView-3 617 1.36 8 400–954
13 and 15 Sep. 2017 Airborne hyperspectral CASI 1500H 1 0.5 48 373–1,043
13 Sep. 2017 UAS-based hyperspectral Nano-Hyperspec 0.12 0.18 276 396–1,005
10–17 Sep. 2017 Bathymetric LiDAR Riegl VQ-880-G 0.4 0.4 1 532

Note. CASI = Compact Airborne Spectrographic Imager; UAS = unmanned aircraft system.

we used the median particle diameter D50 to summarize the grain size distribution. All three instruments
(ac-s, EcoTriplet, and LISST) were deployed by lowering them from the boat into the water until submerged
by approximately 0.5 m, sampling for three minutes, and then computing a time average for each optical
quantity. To account for any potential, minor influence of the small tributary entering the Sacramento River
within our study reach, these optical field measurements were made at three different locations (above
the Cottonwood Creek confluence near the right bank and below the confluence near each bank of the
Sacramento; Figure 1c) and then averaged to obtain representative values for the reach as a whole.

2.2. Remotely Sensed Data and Image Processing
We evaluated the potential to map river bathymetry with a range of different sensors deployed from a vari-
ety of platforms by considering four distinct remotely sensed data sets (Table 1), also accessible from the
USGS ScienceBase (Legleiter & Harrison, 2018). The most readily available type of data was a multispec-
tral image acquired by the WorldView-3 (WV3) satellite. This instrument measures radiance in eight visible
and NIR bands, including coastal and yellow channels specifically intended for water-oriented applications.
The original image used in this study was only approximately georeferenced and did not align closely with
our ground-based surveys. We used ArcMap software tools, a 10-m DEM from the USGS National Elevation
Dataset, and information on satellite viewing geometry provided along with the image to perform orthorec-
tification with a rational polynomial coefficient model. This process greatly improved coregistration with
our field data, such that all of our survey points were located within the channel as depicted in the image.
To assess the impacts of varying levels of radiometric preprocessing on depth retrieval performance, we ana-
lyzed three different versions of the orthorectified WV3 image: (1) raw data consisting of uncalibrated digital
numbers, (2) top-of-atmosphere reflectances calculated following Kuester (2016), and (3) apparent surface
reflectances derived using the Quick Atmospheric Correction algorithm developed by Bernstein et al. (2012)
and included in the ENVI software package.
Hyperspectral scanners measure radiance in a larger number of narrower spectral bands and could enhance
bathymetric mapping by taking advantage of specific wavelengths that are highly responsive to changes in
depth. To examine this possibility, we collected hyperspectral images from both a fixed-wing, manned air-
craft and a small unmanned aircraft system (UAS); we refer to the two data sets as airborne hyperspectral
and UAS-based hyperspectral. The airborne data were acquired with a Compact Airborne Spectrographic
Imager (CASI) 1500H (Innovation, Technology, Research, Excellence, and Science (ITRES), 2014) deployed
on a Cessna Caravan. This pushbroom sensor features an adjustable band configuration, and for this study
we acquired 48 bands with a 0.5-m pixel size. The raw CASI data were radiometrically calibrated and
ATCOR-4 atmospheric correction software (ReSe, 2014) used to produce an image in units of apparent sur-
face reflectance. Direct georeferencing based on data recorded by a GPS and inertial motion unit onboard the
aircraft during the flight provided accurate, pixel-scale image coregistration with surveyed ground control
targets used as checkpoints.

The UAS-based hyperspectral image was acquired from a DJI Matrice 600 multirotor UAS equipped with
a compact, lightweight Nano-Hyperspec imaging system (Headwall Photonics, 2018), which we refer to as
the Nano. Because this instrument is a line scanner, two-dimensional spatial images can only be obtained
through motion of the platform. Due to the Nano's relatively narrow 640-pixel swath width and regulations
on UAS flying height, complete coverage of the Sacramento River required several parallel, along-channel
flight lines. All of these lines were acquired while flying in the same direction to avoid inconsistencies related
to the effects of viewing and illumination geometry on reflectance from the water surface (Legleiter et al.,
2017). Raw Nano images were georeferenced using postprocessed kinematic GPS and inertial motion unit
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data recorded onboard the UAS and individual flight lines were combined into an orthorectified mosaic.
Additional preprocessing involved applying calibration coefficients to convert digital numbers to radiance
and then using a calibration tarp placed on the ground before the flights as an in-scene white reference
to produce a final reflectance image. Because this image was derived from a sequence of scan lines rather
than instantaneous, full-frame images, the Nano data were not suitable for the bathymetric SFM techniques
described by Woodget et al. (2015) and Dietrich (2017).

The same image processing steps were applied to the satellite, airborne, and UAS-based data sets. This work-
flow involved defining a channel mask using a NIR band threshold, manually editing the initial mask as
needed, and then smoothing the in-stream portion of each image with a spatial filter. We used our field-based
depth measurements to calculate pixel-scale mean depths by assigning each point to the closest pixel center
and then averaging all of the depth measurements assigned to a given pixel. Image spectra were extracted
from these locations and the resulting paired observations of depth and reflectance served as input to the
various depth retrieval algorithms described below.

In addition to these passive optical imaging systems, we also evaluated the bathymetric mapping capabil-
ities of the VQ-880-G LiDAR (Riegl, 2018). This sensor was deployed from the same Cessna Caravan as
the CASI, but at a lower flying height that yielded a laser pulse footprint diameter of 0.4 m (Table 1). The
VQ-880-G features both a water-penetrating green (532 nm) laser capable of measuring submerged bed ele-
vations under certain conditions and a NIR laser (1,064 nm) used to assist in modeling the water surface.
The system records the full waveform for each emitted laser pulse and thus enables range measurements
for all discernible targets for a given pulse. Additional detail on the acquisition and processing of the LiDAR
data are available in the technical report provided by the flight contractor and included with our data release
(Legleiter & Harrison, 2018); only a brief summary is provided here. Processing tasks included GPS control
computations, deriving a smoothed best estimate of the aircraft trajectory, applying kinematic corrections,
calculating laser point positions, and classifying the LiDAR point cloud. Points classified as ground were
used to test relative accuracy by comparing adjacent flight lines and to perform automated line-to-line cal-
ibrations that accounted for any variation in system attitude parameters; the resulting corrections were
applied to all points within a given flight line. Riegl's RiProcess software was used to identify and process
bathymetric returns from the channel bed, which included applying a refraction correction based on the
local WSE and the laser's angle of incidence. The number of bottom returns identified via automated and
manual classification methods can be limited by the depth and turbidity of the water column and by the
reflectance of the streambed; McKean et al. (2014) provide a thorough discussion of the many complications
and sources of error associated with bathymetric LiDAR data. In this study, areas lacking bottom returns
were excluded from topo-bathymetric DEM's and explicitly flagged as “no data” voids.

2.3. Depth Retrieval Algorithms
2.3.1. OBRA
In addition to different sensors and platforms, we also considered various methods of inferring water depths
from remotely sensed data. For the passive optical images, we focused on OBRA (Legleiter et al., 2009).
This method uses ratios of spectral bands to isolate the effect of depth on the total at-sensor radiance while
accounting for the confounding influence of variations in bottom reflectance, water column optical prop-
erties, and reflectance from the water surface. More specifically, the image-derived quantity X is defined as

X = ln
[

R(𝜆1)
R(𝜆2)

]
, (1)

where R(𝜆1) and R(𝜆2) are reflectances, radiances, or raw digital numbers recorded in the numerator and
denominator bands centered at wavelengths 𝜆1 and 𝜆2, respectively. The OBRA algorithm takes as input
paired observations of depth d and the radiometric quantity R(𝜆), calculates X values for all possible band
combinations, and regresses X against d for each version of X . The optimal band ratio is taken to be that
(𝜆1, 𝜆2) pair that yields the highest coefficient of determination R2.
2.3.2. Generalized OBRA
In this study, we generalized the OBRA framework by considering several functional forms to enable
more flexible curve-fitting in calibrating X to d. More specifically, generalized OBRA (GenOBRA) involves
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developing X versus d relations for four different types of equations. The simplest model is the linear
expression

d = b0 + b1X , (2)

where b0 and b1 are the the intercept and slope of the best fit regression line. A quadratic model is defined
similarly as

d = b0 + b1X + b2X2, (3)

with an additional coefficient b2 for the quadratic term. The first new functional form introduced as part of
GenOBRA is an exponential equation given by

d = b0eb1X , (4)

where b0 is a multiplicative coefficient and b1 is a multiplier on X in the exponential term. Equation (4) can
be linearized for regression purposes as

ln(d) = ln(b0) + b1X , (5)

such that the slope of the best fit line on a plot of X versus ln(d) is equal to b1 and b0 is obtained by raising e
to the intercept of the regression line. Similarly, the second new function in GenOBRA is the power model

d = b0Xb1 , (6)

where b1 now represents the power to which X is raised. Again, this expression can be linearized to facilitate
regressions of the form

ln(d) = ln(b0) + b1 ln(X). (7)

In this case, the slope of the best fit line on a plot of ln(X) against ln(d) is the exponent b1, and the coefficient
b0 is again derived by raising e to the intercept of the line.
2.3.3. Lowess OBRA
In addition to these four functional forms, we also evaluated another curve-fitting option, a locally weighted
linear regression technique called lowess. Dilbone et al. (2018) explored lowess-based calibration of X to
d as a means of avoiding spurious overestimates of water depth along shallow channel margins. Lowess is
shorthand for “locally weighted scatter plot smooth” and involves using first-order polynomials to fit a trend
line through noisy data. We used a routine based on the MATLAB function “smooth” and set the span to
20% of the total number of data points. Technically, lowess is not intended for prediction, but we adapted
the method for this purpose by using the data points on an (X, d) scatter plot to interpolate a value of d for
any value of X not present in the calibration data set or to linearly extrapolate an estimate of d for any X
outside the range of X values available for calibration.
2.3.4. Generalized OPTID
Another recent refinement of OBRA involves applying the algorithm iteratively to different subsets of
the calibration data created by excluding observations that exceed a series of specified cutoff depths. This
method, deemed OPTID, is intended to optimize the process of calibrating X to d by removing data that
exceed the maximum depth, denoted by dmax, a particular sensor can detect in the river of interest. This
approach thus provides information on depth retrieval performance across various ranges of depths and
could be used to infer dmax directly from an image rather than via theoretical calculations based on field
measurements of water column optical properties (Legleiter & Overstreet, 2012; Mishra et al., 2005; Philpot,
1989). Legleiter et al. (2018) hypothesized that an inflection point on a plot of OBRA R2 versus cutoff depth
could be interpreted as an indication of dmax. In this study, we generalized OPTID by incorporating linear,
exponential, and power X versus d relations into the iterative procedure, in addition to the quadratic version
of OBRA as in Legleiter et al. (2018). We performed generalized OPTID for field spectra and three different
types of passive optical image data with a 0.05-m increment between cutoff depths, starting from 0.5 m and
increasing to 3 m for the field spectra and 3.8 m for the images.

LEGLEITER AND HARRISON 2150



Water Resources Research 10.1029/2018WR023586

Figure 3. Field measurements of absorption and attenuation from our study site on the Sacramento River and six other
streams where similar data sets were acquired during previous remote sensing investigations (see text for details).
Beam absorption coefficients a(𝜆) are plotted in (a) and beam attenuation coefficients c(𝜆) are plotted in (b) using the
same axis limits for comparison.

2.3.5. KNN
As an alternative to OBRA-based depth retrieval, we also considered a nonparametric machine learning
technique called KNN. KNN is designed to estimate a continuous response variable based on the K nearest
training samples in a multivariate feature space, without making any assumptions regarding the distribution
or linearity of the data. In the present context, the unknown depth d̂ is predicted based on the spectrum,
denoted by the vector R′ , extracted from the image at that location by averaging the values of the K pixels
with known depths d and reflectances R that are closest to R′ in spectral feature space. The depth estimate
is given by

d̂ = 1
K

K∑
i=1

di, (8)

where in this study we used the K = 5 nearest values of d based on the Euclidean distance l between R′ and
each of the training pixels. This distance metric is calculated as

l(R,R′) =

√√√√ n∑
i=1

(Ri − R′
i)2, (9)

where i indexes the n spectral bands. In summary, given paired observations of depth and reflectance, KNN
estimates unknown depths as the mean of the K = 5 nearest (in terms of reflectance across all bands) pixels
with known depths; all estimated depths thus fall within the range of depths included in the calibration data
set (Kibele & Shears, 2016).
2.3.6. Calculating Depth From Bathymetric LiDAR Data
The bathymetric LiDAR data were provided as bed elevations rather than depths and thus were not directly
comparable to depths estimated from passive optical images. To enable such a comparison, we calculated
depths from the LiDAR by subtracting bed elevations from a WSE model derived from NIR LiDAR acquired
at the same time as the bathymetric (green) LiDAR. The water surface model was generated using NIR
returns within breaklines defining the water's edge. The NIR water surface points were filtered and edited
by the flight contractor to obtain the most accurate representation of the water surface, which was modeled
as a triangulated irregular network. Evaluation of 26 wetted edge checkpoints by the contractor resulted
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Figure 4. Field measurements of water column optical properties and concentrations of optically significant constituents from the Sacramento River and six
other sites with similar field data sets (see text). Field data on (f) suspended sediment concentration and (g) median sediment grain size were not available for
the Blue River, Colorado River, Muddy Creek, and Snake River. The same bar colors are used in all panels and used only to distinguish among sites, not to
represent water clarity. NTU = Nephelometric Turbidity Units.

in a mean vertical accuracy of −0.033 m with a standard deviation of 0.043 m; a more detailed accuracy
assessment is provided in the report included with the LiDAR data release (Legleiter & Harrison, 2018).
These results imply that the accuracy of the LiDAR-derived water surface was not a limiting factor in our
analysis.

Areas with insufficient or no bottom returns from the green laser were identified by triangulating bathymet-
ric points with a maximum edge length of 4.56 m to ensure that any area greater than 9 m2 was flagged as a
data void. Depths were not calculated for these areas.

2.4. Performance Assessment
To quantify the bathymetric mapping capabilities of various sensors, platforms, and algorithms, we used
several different metrics of depth retrieval performance. For GenOBRA, the OBRA R2 value for the optimal
band ratio provided an indication of the strength of the relationship between the image-derived quantity X ,
defined using equations (2), (3), (4), or (6), or via lowess, and field measurements of flow depth d, based on
the paired observations of depth and reflectance available for calibration. The same 5% sample of the original
field data was used to calibrate all algorithms, with the remaining 95% set aside to assess the accuracy of
depths estimated from remotely sensed data by OBRA, KNN, or LiDAR. This validation involved performing
observed vs. predicted (OP) regressions (Pineiro et al., 2008). The OP R2 value quantifies agreement between
field observations and depths predicted via remote sensing, while the intercept and slope coefficients of the
OP regression provide information on the bias associated with these estimates. For an ideal depth retrieval
approach, the OP regression would coincide with the 1-to-1 line, resulting in an OP R2 of 1; a slope of 1 and
intercept of 0 would indicate unbiased estimates.

In addition to the OBRA and OP regression analyses, we also used the validation subset of the field data to
quantify the accuracy and precision of the various remotely sensed bathymetries. More specifically, for each
validation point, we calculated the depth retrieval error 𝜀 as the difference between the field measurement
of depth df and the depth estimated via remote sensing dr:

𝜀 = d𝑓 − dr . (10)

Positive values of 𝜀 thus imply that the remotely sensed depth was shallower than that measured in the
field (i.e., an underprediction of depth) and conversely a negative 𝜀 indicates that the remotely sensed depth
was greater than the field measurement (i.e., an overprediction of depth). For each combination of sensor,
platform, and algorithm, we calculated depth retrieval error summary statistics; the mean error served as an
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Figure 5. (a–c) Example spectra and (d–f) quadratic OBRA matrices for basic, TOA reflectance, and atmospherically corrected versions of the WV3 satellite
image. The spectra plotted in (a)–(c) were selected at random from the in-stream portion of each version of the WV3 image and different line colors were used
only to distinguish among the individual spectra. OBRA = Optimal Band Ratio Analysis; TOA = top-of-atmosphere; WV3 = WorldView-3.

indication of bias (i.e., underprediction or overprediction of depth, on average) and the standard deviation
of 𝜀 provided an index of precision. We also used box plots to compare distributions of 𝜀 for the various
approaches. Similarly, to illustrate how bathymetric accuracy varied as a function of depth, we plotted 𝜀

versus d; ideally, such a plot would not exhibit any obvious trend, with a random, normal distribution about
the horizontal axis. Finally, to visualize the spatial pattern of depth retrieval errors in the context of channel
morphology, we produced error maps by plotting 𝜀 values at the location of the corresponding validation
points.

3. Results
3.1. Water Column Optical Properties
Figure 3 summarizes our field measurements of absorption and attenuation from the Sacramento and places
them in the context of the other rivers. In all cases, the beam absorption and attenuation coefficients a(𝜆)
and c(𝜆) were highest at shorter blue wavelengths due to chlorophyll and organic matter dissolved within
the water column. a(𝜆) and c(𝜆) declined with wavelength into the green, stabilized around 575 nm, and
then increased abruptly beyond 700 nm due to strong absorption of NIR radiation by pure water. In com-
parison with the other sites, the Sacramento had intermediate IOP's, with values of a(𝜆) and c(𝜆) that were
much lower than the sediment-laden Muddy Creek and Niobrara River but higher than the clear-flowing
Snake River.

Consistent with our qualitative field observations of the Sacramento's bluish-green hue and moderate water
clarity, the EcoTriplet data summarized in Figures 4a and 4b indicate that the Sacramento had turbid-
ity and bb(700) values in between the visually opaque Muddy and Niobrara sites and the other, relatively
clear streams. The measured amounts of organic matter within the Sacramento River were relatively small,
however, with a chlorophyll concentration nearly as low as the oligotrophic Snake River and a colored
dissolved organic matter (CDOM) concentration lower than every other river except for the Deschutes
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Figure 6. Generalized OBRA output for field spectra measured along the Sacramento River. (a–e) OBRA matrices illustrating spectral variations in the strength
of the relationship between the image-derived quantity X and flow depth d modeled using (a) linear, (b) quadratic, (c) exponential, (d) power, and (e) lowess
functions. (f–j) Corresponding X versus d calibration scatter plots for each type of model. Analogous figures for each of the passive optical image data sets
evaluated in this study are provided as supporting information (Figures S1–S3). OBRA = Optimal Band Ratio Analysis; RMSE = root-mean-square error.

(Figures 4c and 4d). Suspended sediment also influences water column IOP's, but LISST measurements of
sediment concentration and particle size were only available for three of the sites in our current database
(Figures 4e and 4f). Relative to the Deschutes and Niobrara Rivers, the upper Sacramento had lower
concentrations of finer-grained sediment, leading to greater water clarity on the Sacramento.

3.2. Preprocessing of Multispectral Satellite Image Data
Of the various remotely sensed data sets we evaluated, the most widely available was the multispectral
image acquired by the WV3 satellite. DigitalGlobe provides a number of data products with different lev-
els of preprocessing, but the basic deliverable consists of an image with pixel values in raw digital counts.
Example spectra extracted from within the Sacramento River channel for this type of raw image are shown
in Figure 5a but were difficult to interpret because they had not been converted to physically meaningful
radiometric units. DigitalGlobe has published coefficients for performing such a radiometric calibration and
Kuester (2016) provided instructions for calculating top-of-atmosphere (TOA) reflectances. These calcula-
tions account for sensor characteristics and variations in the amount of incident solar energy, which depend
on location, time of year, and time of day and thus provides a means of standardizing images from different
places and dates. The effects due to Earth's atmosphere will remain, however. The example spectra shown in
Figure 5b illustrate the strong influence of atmospheric scattering, which is most pronounced at shorter blue
wavelengths, on TOA reflectances, particularly for a relatively dark target like water. Differences among the
spectra in Figure 5b are dwarfed by the atmospheric effects expressed as a much more significant decrease
in TOA reflectance from nearly 0.15 to 0.01 with increasing wavelength across the eight WV3 bands. A
more rigorous approach to image normalization thus would involve some form of atmospheric correction;
we used the Quick Atmospheric Correction model (Bernstein et al., 2012) to produce an apparent surface
reflectance image consisting of in-stream spectra like those shown in Figure 5c. This more advanced degree
of processing lead to individual spectra that were much more distinct from one another, with reflectances
varying from approximately 0.015 to 0.06, and therefore potentially more useful for depth retrieval.
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To assess the impact of these three levels of radiometric preprocessing—essentially none, TOA reflectance,
and full atmospheric correction—on the feasibility of mapping river bathymetry from WV3 satellite data,
we performed quadratic OBRA for each version of the Sacramento River image; a quadratic function was
selected because this type of model has proven effective in previous applications of OBRA and was readily
implemented within our standard, existing workflow. The results of this analysis are summarized in
Figures 5d–5f. The OBRA matrices for the three image variants were very similar to one another and in
all cases the optimal band ratio consisted of an identical green numerator and a red denominator. More
importantly, the OBRA calibration R2 values were nearly identical across the three images, indicating that
the relationship between the image-derived quantity X and flow depth d was just as strong for the original,
raw image as for the version processed to mitigate atmospheric effects. Based on these results, we only used
the original WV3 image rather than the TOA reflectance or atmospherically corrected versions that did not
appreciably improve depth retrieval, in making comparisons among different sensors and algorithms.

3.3. GenOBRA
Although OBRA has proven to be an effective means of estimating flow depths from various passive optical
image data sets across a range of river environments, we hypothesized that this approach could be further
enhanced by generalizing the curve-fitting phase of the calibration process. In this study, we considered not
only the linear and quadratic X versus d relations used in previous applications of OBRA but also intro-
duced new exponential, power, and lowess models. To evaluate whether and to what extent each functional
form could improve depth retrieval for various kinds of data, we performed GenOBRA for continuous field
spectra, a multispectral satellite image, and airborne and UAS-based hyperspectral images of the upper
Sacramento River. The results of this analysis were summarized using OBRA matrices that highlight spectral
variations in the strength of the relationship between X and d for each type of relation, along with calibra-
tion scatter plots that illustrate the curve fit associated with the optimal band ratio. An example based on
field spectra acquired during 10 transects across one of our Sacramento River cross sections is shown in
Figure 6; analogous figures for the image data sets are included as supporting information (Figures S1–S3).

We emphasize field spectra herein because these data represent direct measurements of reflectance imme-
diately above the water surface and thus are not contaminated by atmospheric effects, mixed pixels, or
georeferencing issues that can affect image data. The relationship between X and d therefore is least ambigu-
ous for field spectra and performing GenOBRA of this data set allowed us to highlight differences among
various functional forms in the absence of the confounding influences associated with image data. In addi-
tion, because the data were essentially continuous, GenOBRA of field spectra maximized our ability to
identify specific wavelengths highly sensitive to variations in depth. Insights gleaned from field spectra thus
could help to direct subsequent analyses of image data sets.

For our field spectra from the upper Sacramento, all five forms of the equation used to calibrate X to d
resulted in very strong relationships, with OBRA regression R2 values greater than 0.91 in all cases and as
high as 0.96 for the exponential model (Figure 6h). The plots in Figures 6f–6j indicate a moderate degree of
curvature in the X versus d relation that was not captured by the linear model but was represented well by
other model types, particularly the exponential. The lowess model also provided a localized fit that attempted
to account for the greater variability in X that occurred at the greatest depths. The OBRA matrices in the top
row of Figure 6 also were very similar to one another. Regardless of the functional form used, the optimal
band pair consisted of two green wavelengths ranging from 571 to 596 nm, with the shorter of the two serving
as the numerator. The broad regions of warm red tones across numerator (𝜆1) wavelengths from 425 to
700 nm and denominator (𝜆2) wavelengths from 500 to 725 nm indicated high OBRA R2 values and implied
that X versus d relations would remain strong even for the wider bands of multispectral and hyperspectral
imaging systems. Moreover, the OBRA matrices in Figures 6a–6e indicated that many other wavelength
combinations would yield X versus d relations nearly as strong as the optimal band ratio.

Similar analyses for each of the image data sets evaluated in this study confirmed the effectiveness of the
GenOBRA framework for depth retrieval (Figures S1–S3). As for the field spectra, differences in the OBRA
calibration R2 among the five model types were slight, with the linear and power X versus d equations
generally producing the weakest relationships and the local fitting of the lowess approach providing the
highest R2 values. Again, OBRA matrices indicated that broad ranges of wavelengths were conducive to
accurate depth retrieval, not just one specific highly optimal band pair. For all three sensors, band selection
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Figure 7. Box plots summarizing distributions of depth retrieval errors for six different algorithms for each of three
types of passive optical image data and for a bathymetric LiDAR system. The center line of each box indicates the
median and the lower and upper limits of the box correspond to the first and third quartiles. The whiskers extend
above or below these quartiles by 1.5 times the interquartile range and encompass all of the data points not considered
outliers. Abbreviations for the different model types are as follows: Lin = linear Optimal Band Ratio Analysis (OBRA);
Quad = quadratic OBRA; Exp = exponential OBRA; Pow = power OBRA; Low = lowess OBRA; KNN = K nearest
neighbors regression.

was not sensitive to the functional form employed, with the same (WV3) or nearly the same (CASI and
Nano) wavelengths identified for all five GenOBRA variants.

3.4. Bathymetric Mapping Performance of Various Sensors and Algorithms
3.4.1. Accuracy Assessment
A number of different types of remotely sensed data are now available for mapping river bathymetry, as well
as a growing number of depth retrieval algorithms. In this study, we tested the performance of six different
spectrally based techniques for each of three kinds of passive optical image data (multispectral satellite
and airborne and UAS-based hyperspectral) along with a water-penetrating bathymetric LiDAR system.
This analysis involved comparing remotely sensed depth estimates to field-based measurements, calculating
summary statistics for depth retrieval errors, and performing OP regressions. Our results are summarized
in Tables 2 and S1 and depicted graphically in Figure 7.

The mean and median of the depth retrieval error 𝜀 provide a metric of accuracy and were similar and near
zero for the various algorithms applied to the WV3 satellite image and CASI airborne hyperspectral image,
indicating that these combinations of sensor and technique yielded unbiased depth estimates on average.
For the Nano UAS-based hyperspectral image, however, mean (median) values of 𝜀 were positive and up to
8% (5%) even for an exponential OBRA relation, implying that depths tended to be underestimated from the
Nano image relative to colocated field measurements. Conversely, the bathymetric LiDAR had a negative
bias of 2%, suggesting that this sensor tended to slightly overpredict depth where bathymetric bottom returns
were detected. Comparing WSEs derived from NIR LiDAR to 149 RTK GPS points surveyed in the field along
the water's edge indicated that the LiDAR-based WSE tended to be higher than that measured in the field,
with mean and median errors of −0.1 m and an error standard deviation of 0.06 m. Overestimating the WSE
from the remotely sensed data might have contributed to overpredictions of depth from the bathymetric
LiDAR.

We used the standard deviation of 𝜀 as a basic metric of depth retrieval precision, as well as the interquartile
range that defined the lower and upper limits of the box plots in Figure 7. Error standard deviations varied
slightly among the different GenOBRA variants for each sensor but overall the CASI and Nano hyperspec-
tral images yielded more precise depth estimates (14–15% of the reach-averaged mean depth) than the WV3
satellite image (18%). For all three sensors, the new KNN algorithm resulted in smaller error standard devi-
ations than any of the OBRA models, most notably for the WV3 image (13%). The LiDAR provided the most
precise depth information, with an error standard deviation of 5%, but the maximum depth detected by the
LiDAR was 2.17 m, and as a result, bathymetric coverage was only achieved for 47% of the upper Sacramento
River project area.

LEGLEITER AND HARRISON 2156



Water Resources Research 10.1029/2018WR023586

Ta
bl

e
2

D
ep

th
Re

tr
ie

va
lE

rr
or

Su
m

m
ar

y
St

at
ist

ic
s

Se
ns

or
W

V
3

m
ul

tis
pe

ct
ra

ls
at

el
lit

e
C

A
SI

ai
rb

or
ne

hy
pe

rs
pe

ct
ra

l
N

an
o

U
A

S-
ba

se
d

hy
pe

rs
pe

ct
ra

l
Ba

th
ym

et
ric

M
od

el
Li

n
Q

ua
d

Ex
p

Po
w

Lo
w

K
N

N
Li

n
Q

ua
d

Ex
p

Po
w

Lo
w

K
N

N
Li

n
Q

ua
d

Ex
p

Po
w

Lo
w

K
N

N
Li

D
A

R
Va

lid
at

io
n

n
20

61
8

20
61

8
20

61
8

20
61

8
20

61
8

20
62

0
21

50
3

21
50

3
21

50
3

21
50

3
21

50
3

21
50

3
18

06
9

18
06

9
18

06
9

18
06

9
18

06
9

18
07

4
13

35
8

M
ea

n
de

pt
h

(m
)

1.
84

1.
84

1.
84

1.
84

1.
84

1.
84

1.
80

1.
80

1.
80

1.
80

1.
80

1.
80

1.
77

1.
77

1.
77

1.
77

1.
77

1.
77

1.
80

M
ea

n
er

ro
r(

%
)

1
1

3
3

1
0

0
1

2
4

0
0

6
8

8
4

7
−

1
−

2
St

d.
de

v.
(%

)
20

18
18

18
18

13
18

14
14

21
13

10
17

14
15

20
15

12
5

M
in

.e
rr

or
(%

)
−

66
−

85
−

66
−

64
−

69
−

62
−

50
−

60
−

63
−

74
−

78
−

81
−

48
−

45
−

78
−

56
−

87
−

96
−

42
Fi

rs
tq

ua
rt

ile
(%

)
−

12
−

10
−

8
−

8
−

9
−

6
−

13
−

9
−

8
−

10
−

8
−

4
−

6
0

−
1

−
10

−
2

−
6

−
4

M
ed

ia
n

er
ro

r(
%

)
−

2
0

1
1

0
−

1
−

3
−

1
0

1
−

1
0

1
6

5
−

1
5

−
1

−
2

Th
ird

qu
ar

til
e

(%
)

12
10

12
12

10
5

11
9

10
17

8
3

13
14

14
13

14
3

1
M

ax
.e

rr
or

(%
)

10
8

93
96

97
92

90
11

2
96

91
99

93
85

95
94

97
11

0
94

78
77

O
P

R2
0.

67
0.

73
0.

73
0.

73
0.

74
0.

87
0.

75
0.

85
0.

85
0.

74
0.

87
0.

92
0.

79
0.

88
0.

86
0.

73
0.

86
0.

90
0.

95
O

P
sl

op
e

1.
01

1.
01

1.
02

1.
05

1.
02

1.
01

1.
01

0.
99

1.
03

1.
42

0.
99

0.
99

1.
12

1.
20

1.
20

1.
29

1.
20

1.
02

0.
96

O
P

in
te

rc
ep

t
0.

00
0.

01
0.

02
−

0.
03

−
0.

02
0.

00
−

0.
02

0.
03

−
0.

03
−

0.
65

0.
03

0.
01

−
0.

11
−

0.
18

−
0.

19
−

0.
43

−
0.

21
−

0.
05

0.
02

N
ot

e.
C

A
SI

=
C

om
pa

ct
A

irb
or

ne
Sp

ec
tr

og
ra

ph
ic

Im
ag

er
;O

P
=

ob
se

rv
ed

ve
rs

us
pr

ed
ic

te
d;

K
N

N
=

K
ne

ar
es

tn
ei

gh
bo

rs
re

gr
es

si
on

;W
V

3
=

W
or

ld
V

ie
w

-3
.

LEGLEITER AND HARRISON 2157



Water Resources Research 10.1029/2018WR023586

Figure 8. Remotely sensed bathymetric maps (top row) and corresponding depth retrieval error maps (bottom row)
produced using an exponential Optimal Band Ratio Analysis model for the WorldView-3 multispectral satellite image
and the airborne CASI and unmanned aircraft system-based hyperspectral images and for the LiDAR system. Similar
figures for other depth retrieval algorithms are provided as supporting information (Figures S4–S8). CASI = Compact
Airborne Spectrographic Imager.

To summarize our validation of depths inferred with various sensors and algorithms, we regressed observed
depths measured in the field against predicted depths derived from remotely sensed data. The OP regression
R2 value provided a convenient metric of agreement between measured and inferred depths and ranged
from 0.67 for linear OBRA of the WV3 image to 0.95 for the LiDAR. Other OBRA variants lead to higher
R2 values for the satellite data, up to 0.74 for a lowess model, but both of the hyperspectral images yielded
more accurate depth estimates by this measure. For the airborne CASI data, the quadratic, exponential, and
lowess versions of OBRA lead to OP regression R2 values from 0.85 to 0.87, whereas the linear and power
OBRA models were notably poorer (0.74–0.75). Results for the UAS-based Nano image were similar but
slightly better, with OP R2 values as high as 0.88 for a quadratic X versus d relation. Again, the KNN method
improved depth retrieval performance in terms of OP regression, with the greatest increase in R2 for the WV3
data set (0.87). In this study, the most reliable bathymetric information was derived from the LiDAR system,
although our validation exercise only considered the subset of the channel for which bottom returns were
detected; voids in the LiDAR were not included in the analysis. Inspection of the OP regression coefficients
in Table 2 indicated that slopes were near 1 and intercepts near 0 for the WV3 and CASI images, implying
unbiased depth retrieval for these sensors. For the UAS-based Nano image, however, slopes greater than
1 and negative intercepts implied underpredictions of depth, consistent with the error summary statistics
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Figure 9. (a–d) Observed (field measured) versus predicted (remotely sensed) scatter plots and (e–h) plots of depth retrieval error (field - remote) as a function
of measured depth for an exponential Optimal Band Ratio Analysis model applied to the three passive optical imaging systems and for the bathymetric LiDAR.
Similar figures for other depth retrieval algorithms are provided as supporting information (Figures S9–S13). CASI = Compact Airborne Spectrographic Imager.

described above. Conversely, for the LiDAR an OP slope less than 1 and a small positive intercept implied a
slight tendency to overpredict depths.

3.4.2. Spatial Patterns of Depth Retrieval Error
In addition to quantifying overall bathymetric mapping performance on a large gravel-bed river, a related
research objective was to better understand the limitations of various sensors and algorithms by examining
how accuracy varied spatially within the context of channel morphology. To support this analysis, we pro-
duced bathymetric maps and depth retrieval error maps like those shown in Figure 8 for exponential OBRA
models developed for the WV3 multispectral satellite image and the CASI airborne and Nano UAS-based
hyperspectral images, as well as the LiDAR. Analogous figures for other OBRA variants and the KNN algo-
rithm are provided as supporting information (Figures S4–S8). Spatial patterns were similar across depth
retrieval techniques and the following interpretations based on the exponential OBRA results depicted in
Figure 8 also pertain to the other, supporting figures.

The depth maps in the top row of Figure 8 all captured the shallow areas on the right bank near the upper
end of the reach where a small side channel enters the Sacramento from the floodplain, at the mouth of
Cottonwood Creek at the apex of the bend, and over the point bar on the left side of the channel where the
river curves to the left. The greatest depths in our study area were observed at the top of the reach and near
the right (outer) bank downstream of the bend apex. These pools were best represented in the bathymetric
map produced from the CASI image but were conspicuously absent from the LiDAR-based bathymetry due
to the lack of bottom returns not only from these areas but anywhere the channel was deeper than about
2 m. The WV3-derived depth map was similar to that from the CASI and highlighted the pool at the upper
end of the study reach but was noisier and more pixelated due to the coarser 1.36-m spatial resolution of
the satellite image data (Table 1). The UAS-based Nano imaging system covered a slightly smaller spatial
extent but provided the highest spatial resolution and yielded a bathymetric map that appeared relatively
smooth, at least at the scale of the entire study area. Depths tended to be underpredicted from the Nano
image, particularly in the pool at the top of the reach.
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Figure 10. Generalized OBRA of Progressively Truncated Input Depths (OPTID) for three passive optical imaging
systems and field spectra. The OBRA calibration R2 is plotted against the OBRA of Progressively Truncated Input
Depths cutoff depth to quantify depth retrieval performance across a range of depths. The lines in each panel represent
different OBRA models. CASI = Compact Airborne Spectrographic Imager; OBRA = Optimal Band Ratio Analysis;
UAS = unmanned aircraft system.

The spatial patterns in these remotely sensed bathymetries propagated to the depth retrieval error maps in
the bottom row of Figure 8. For example, the warm, reddish tones adjacent to and downstream of the mouth
of Cottonwood Creek in the error map for the WV3 image indicate that depths were overestimated in this
area. Conversely, the dark blue symbols further downstream near the right bank represent underpredictions
of depth in this pool. For the CASI error map, in contrast, overpredictions near the confluence were absent or
not as evident and underpredictions in pools were smaller in terms of both magnitude and spatial extent. The
overall tendency to underpredict depths from the Nano image was expressed by the green colors comprising
most of the error map for this sensor. The depth retrieval error map for the LiDAR was dominated by neutral
yellow tones representing very small errors in areas where depth estimates were possible but also featured
large gaps where no bottom returns were detected.
3.4.3. Depth Retrieval Performance Across a Range of Depths
To evaluate the potential of various sensors and algorithms to provide reliable bathymetric information
across a range of depths, we examined plots of observed vs. predicted depths, plotted depth retrieval errors
as a function of measured depth, and performed OPTID. For the OP regressions and plots of error versus
depth, we again used output from exponential OBRA models applied to the three passive optical images as
an example (Figure 9); analogous figures for the other algorithms are provided as supporting information
(Figures S9–S13).

As summarized by the OP regression R2 values listed in Table 2 and described above, bathymetric informa-
tion inferred from the WV3 image was the least reliable of the four sensors, with more scatter about the
regression line in Figure 9a, particularly for greater depths. Conversely, the bathymetric LiDAR provided
highly accurate, precise depth estimates, but only for areas shallower than 2 m. The two hyperspectral imag-
ing systems were intermediate in terms of OP R2, but departures from the best fit line were more random
and evenly distributed for the CASI than for the Nano.

Plotting depth retrieval errors against observed depth further clarified how bathymetric accuracy and pre-
cision varied with depth. The plots in Figures 9e–9h can be interpreted as two-dimensional histograms,
with the colors representing the density of observations; warm red tones indicate a higher concentration
of data points for a particular combination of d and 𝜀. The distribution of errors was broadest for the WV3
image and narrowest for the LiDAR, consistent with the accuracy assessment in section 3.4.1. Visualizing
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the data in this manner, however, revealed that the error distribution varied with depth for the three passive
optical imaging systems and was not symmetric about 0, as would occur for an ideal bathymetric map-
ping instrument. In all cases, depths tended to be overpredicted (negative errors) for shallower depths and
underpredicted (positive errors) for relatively large observed depths. This pattern was expressed as a positive
trend in the 𝜀 versus d scatter plots in Figures 9e–9g. The negative bias toward underprediction of depths
for the Nano image was highlighted by the dark red area below the dashed horizontal line for zero error in
Figure 9g. The LiDAR system provided the most symmetric, least skewed error distribution but was based
almost entirely on shallow depths less than 2 m due to the extensive voids in this data set.

The new OPTID procedure introduced by Legleiter et al. (2018) also provided an explicit means of quantify-
ing depth retrieval performance across a range of depths. Figure 10 shows that OBRA R2 initially decreased
with cutoff depth when the calibration data set was restricted to include only a very small range of depths
up to about 0.75 m. With further increases in cutoff depth, however, OBRA R2 increased as a broader range
of depths were included in the calibration data sets. This positive trend continued over the entire range of
cutoff depths for the WV3 and CASI images but for the Nano image OBRA R2 dropped slightly at 2.55 m and
then remained steady at a plateau of 0.69–0.84, depending on OBRA model type. For the field spectra, OBRA
R2 reached a maximum of 0.98 for a cutoff depth of 2.3 m before decreasing slightly for greater depths. In all
cases, the plots of OBRA calibration R2 did not feature any obvious, pronounced inflection points beyond
which the OBRA R2 decreased with cutoff depth. Moreover, the similarity among the lines representing dif-
ferent OBRA models in each panel of Figure 10 suggests that none of the OBRA variants provided markedly
superior performance for certain ranges of depths, although the linear and power models were noticeably
worse for the two hyperspectral image data sets.

In contrast to the passive optical imaging systems, the Riegl VQ-880-G LiDAR we evaluated failed to provide
depth information across the full range of depths present in our study area along the Sacramento River. The
depth distributions measured in the field and inferred from the LiDAR and airborne hyperspectral imaging
systems are compared in Figure 11. Whereas the histograms for the in situ and CASI-derived depths were
similar to one another, with a small underrepresentation of depths greater than about 3 m in the image-based
distribution, the histogram of LiDAR depths was quite distinct from that of the field data. For over 50% of the
locations with field-based depth measurements, a LiDAR-derived depth estimate could not be made due to
a lack of bottom returns in areas deeper than about 2 m. The distribution of LiDAR depths in Figure 11a thus
was strongly skewed toward shallower portions of the channel and essentially truncated at 2 m, implying that
a large fraction of the river was not captured by this remote sensing approach. These results were expressed
spatially as large voids in the bathymetric LiDAR map in Figure 8.

4. Discussion
4.1. Constraints on Remote Sensing of River Bathymetry
Reliable, spatially distributed information on water depth is critical for numerous applications in river
research and management. For example, on the upper Sacramento accurate bathymetry is an essential input
to decision support tools intended to help guide operation of Shasta and Keswick Dams so as to provide flow
conditions favorable for federally listed salmonid species (e.g., Danner et al., 2012). More generally, depth
maps facilitate in-stream habitat assessment for various organisms and monitoring of natural resources pop-
ular for recreation. In a geomorphic context, bathymetric data can be used to parameterize numerical models
of flow and sediment transport, identify zones of erosion and deposition, and create morphologic sediment
budgets. Given the difficulty and expense of surveying even short reaches via conventional field methods,
all of these applications could benefit from improved methods for remote sensing of river bathymetry. In
this study, we evaluated several new spectrally based techniques, along with various sensors and platforms.
While the results we obtained from the large, gravel-bed upper Sacramento River were encouraging in some
respects, certain constraints on depth retrieval must be acknowledged as well.

One critical limitation of fluvial remote sensing is that a given imaging system deployed above a specific river
can only detect depths up to some finite maximum, dmax. For a particular combination of sensor and stream,
dmax depends on both various river attributes and technical characteristics of the sensor itself, primarily
the instrument's radiometric resolution (Legleiter & Roberts, 2009; Philpot, 1989). The IOPs of the water
column exert a primary control on dmax, and in this study we measured beam absorption and attenuation
coefficients across a range of wavelengths, as well as the backscattering coefficient at 700 nm. We compared
our observations from the upper Sacramento to similar data sets from other rivers (Figures 3 and 4) as part
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Figure 11. Histograms comparing the distribution of depths measured in the field and used for validation to the
distributions of depths inferred from (a) bathymetric LiDAR and (b) airborne hyperspectral image data. Data ranges for
which the distributions for the field-based validation data and remotely sensed depths overlap are represented by the
superimposition of the two colors, by darker green in (a) and purple in (b). CASI = Compact Airborne Spectrographic
Imager.

of an ongoing effort to quantify various factors that influence dmax for both passive optical and bathymetric
LiDAR sensors.

In this case, the intermediate values of a(𝜆) and c(𝜆) for the Sacramento imply that reliable depth estimates
could be inferred over a broader range of depths on the Sacramento than on more strongly attenuating
rivers such as the Niobrara but also suggest that the maximum depth detectable by a given sensor would
be shallower on the Sacramento than on a clear-flowing river like the Snake. We also noted that organic
constituents influenced the spectral shape of a(𝜆) and c(𝜆), with streams carrying greater concentrations of
chlorophyll and CDOM having steeper spectral slopes at blue wavelengths. This effect was most evident for
the Colorado River, which had notably higher negative values of da(𝜆)

d𝜆
and dc(𝜆)

d𝜆
(Figure 3a) along with greater

concentrations of chlorophyll and CDOM than all but the two least clear sites in our compilation (Muddy
and Niobrara).

Suspended sediment also affects IOP's and the Sacramento again had intermediate values in compari-
son to the other rivers. The highly dynamic, sand-bed Niobrara River had much greater concentrations of
coarser-grained material (Figures 4e and 4f) that lead to more scattering (Figure 4b), stronger attenuation
(Figure 3b), and reduced water clarity (Figure 4a). The Deschutes River provides a more interesting com-
parison with the Sacramento. Although the water in the Deschutes appeared much darker in color than
the relatively bright blue-green Sacramento, the suspended sediment concentration and D50 grain size were
higher on the Deschutes than on the Sacramento. Figure 3a also indicates higher values of a(𝜆) for the
Sacramento than for the Deschutes across all wavelengths, with a similar spectral shape. For the total attenu-
ation, however, the Sacramento had higher values of c(𝜆) than the Deschutes at the shortest wavelengths on
Figure 3b but attenuation was weaker on the Sacramento than on the Deschutes across the green, red, and
NIR. This pattern could account for the bluish-green color of Sacramento water, driven primarily by greater
scattering (Figure 4b) on the Sacramento despite its lower suspended sediment concentration and parti-
cle size. These results suggest that the composition, shape, and vertical distribution of suspended sediment
within the water column also might influence a river's optical characteristics and thus dmax.

For passive optical image data, the iterative OPTID algorithm introduced by Legleiter et al. (2018) could
provide a means of identifying the range of depths for which image-derived estimates are reliable. In this
study, we generalized OPTID to include linear, quadratic, exponential, and power relations between X and
d and observed similar trends on plots of the OBRA calibration R2 versus cutoff depth for all model types
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(Figure 10). For the shallowest cutoff depths, most of the available field data were excluded and a limited
range of depths was used for calibration. In this case, the radiance signal related to depth was relatively weak
and overwhelmed by variations in reflectance associated with differences in bottom composition, sun glint,
and other types of environmental and instrumental noise. For greater cutoff depths, OBRA R2 increased as
a broader range of depths was included in the calibration data set, strengthening the depth-related signal.
These results imply that a sufficient range of depths must be sampled in the field and incorporated into the
calibration process to develop robust X versus d relations.

Beyond a certain cutoff depth, however, including deeper field observations could lead to decreases in OBRA
R2 as measurements greater than the sensor's dmax weaken the relationship between X and d. Legleiter et al.
(2018) hypothesized that this scenario would be expressed as an inflection point on a plot of OBRA R2 versus
OPTID cutoff depth that could be interpreted as an estimate of the sensor's dmax. Importantly, this approach
would allow dmax to be inferred directly from an image, rather than calculated on the basis of optical field
measurements requiring specialized instrumentation. Legleiter et al. (2018) observed a clear inflection point
in their study of the Deschutes River and reported that the maximum depth detectable by the CASI imaging
system on the Deschutes was approximately 3.6 m. In this study, the absence of clear inflection points for any
of the three sensors or four OBRA variants we considered suggests that all of these sensors and algorithms
were capable of detecting depths up to at least 3.8 m on the upper Sacramento.

Conversely, the Riegl VQ-880-G bathymetric LiDAR system failed to provide depth information for large
portions of the channel due to a lack of bottom returns from areas deeper than about 2 m. As a result, over
half of our study reach was represented as voids in the LiDAR data set (Figure 11). The causes of these exten-
sive gaps were not immediately obvious but could include excessive water turbidity, low bottom reflectance,
insufficient laser power, and/or difficulties in distinguishing among returns from the water surface, water
column, and streambed while processing the raw LiDAR data. Further investigation into the limitations of
bathymetric LiDAR in this and other river environments is an important topic for additional research. For
example, in this study we evaluated the raster data product provided by the flight contractor but careful
analysis of the original point cloud and/or raw waveforms might increase the number of bottom returns.
The dynamic range attainable by various LiDAR systems is often specified in terms of secchi disk depth (not
measured on the Sacramento during this study), but these guidelines should be rigorously tested across a
range of river environments and could be based on more objective, consistent parameters such as the IOPs
of the water column.

Given these constraints on remote sensing of river bathymetry, a hybrid field and airborne approach might
be required. While remote sensing can provide more continuous, more extensive spatial coverage and higher
spatial resolution than traditional field surveys, remote sensing methods are limited to a certain range of
depths. Rather than being viewed as a complete solution for bathymetric mapping, remote sensing tech-
niques could be complemented by ground-based data collection. For example, image- or LiDAR-derived
depth estimates for shallow areas that comprise the majority of the channel could be combined with
boat-based measurements that target deep pools and any other gaps in the remote sensing coverage. The
field surveys might consist of (1) a longitudinal profile down the thalweg, which would capture deep areas
of the channel where remotely sensed bathymetry would be least reliable or not available at all and (2) care-
fully selected cross sections that could be used to characterize transverse variations in depth, provide shallow
observations for calibrating remotely sensed depth estimates, and quantify depth measurement error by
making multiple passes.

4.2. Selecting a Platform, Sensor, and Algorithm for Depth Retrieval
While the limitations described above must be acknowledged, these constraints do not imply that remote
sensing cannot play an important role in characterizing river systems. To the contrary, a range of sensors and
algorithms can provide valuable bathymetric information under appropriate circumstances. Consequently,
a key challenge in fluvial remote sensing is identifying the most appropriate type of data to collect given
project goals, river characteristics, and financial constraints. Making informed, efficient use of these tools
requires knowledge of the various instruments and techniques available and in this study we attempted to
inform these choices by acquiring remotely sensed data from various platforms and sensors and evaluating
different depth retrieval algorithms. A clear understanding of study objectives is also critical, as the goals of
the project, the size of the river, and the extent of the area of interest will dictate which approach is most
suitable.
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For example, multispectral satellite images, with their greater spatial extent and moderately high resolu-
tion, might be the preferred data type for investigating long segments of middle- to large-size rivers or for
examining fluvial processes at a catchment scale (e.g., Hugue et al., 2016). Conversely, if only short reaches
and/or smaller channels are of interest and fine-scale information is important, a UAS-based multispec-
tral or hyperspectral sensor might be a better choice due to the high resolution (pixel sizes of a few cm to
tens of centimeters) that can be achieved and the ability to tailor flight plans and data collection parame-
ters on a case-by-case basis. Imaging systems deployed from manned, fixed-wing aircraft might be the most
versatile, providing spatial resolution intermediate between satellite data and UAS and enabling targeted,
task-specific data collection along river corridors at an extent that would be comparable to that captured in
a typical satellite image and would be impractical to cover via UAS.

Another important consideration during sensor selection could be operational flexibility. For example,
deployment from a UAS would enable opportunistic data collection under favorable conditions, avoiding
flashfloods that might reduce water clarity, smoke from fires that might impede visibility, or other factors
that might compromise image acquisition. UAS also have greater rapid response potential for capturing
transient events of interest, such as salmon spawning runs, blooms of benthic algae, or geomorphic change
detection after a flood (e.g., Tamminga et al., 2015). Whereas UAS can be operated independently by small
research groups or agencies, provided appropriate certifications and permissions are in place, airborne data
collection typically entails working with a flight contractor and thus involves a longer planning horizon and
greater coordination. Similarly, although satellites can be tasked for specific areas of interest and an acquisi-
tion window requested, the end user has no control over the exact timing of data collection. Clouds or haze
also could render a satellite image useless. Planning a fluvial remote sensing study will involve trade-offs
related to (1) area of coverage; (2) sensor characteristics, such as spatial, spectral, and radiometric resolu-
tion; (3) operational parameters, including flying height, speed, and survey duration for UAS or aircraft; and
(4) cost, of course. Potential users should anticipate making a careful, deliberate decision as to which remote
sensing approach is most likely to meet a study's objectives.

An encouraging result of our investigation on the upper Sacramento River was the strong depth retrieval
performance of the WV3 multispectral satellite. This orbital platform features off-nadir pointing capabil-
ities that allow for short revisit times and enable the sensor to be tasked for specific locations. Moreover,
because WV3 data are available to U.S. government agencies at no cost through a special licensing pro-
gram called NextView and also are relatively affordable for nongovernmental organizations, this approach
could become a powerful tool for assessment and monitoring of in-stream habitat and other applications
in river management. Our analysis of WV3 images with varying levels of preprocessing indicated that reli-
able bathymetric information could be derived from a standard, basic WV3 data product. The OBRA results
summarized in Figure 5 imply that even for images comprised of raw, uncalibrated digital numbers, taking
the ratio of two spectral bands accounted for sensor characteristics and atmospheric influences and suc-
cessfully isolated the effect of depth on pixel values. Moreover, accurate depth estimates can be produced
from minimally processed satellite image data, without requiring more advanced, specialized remote sens-
ing software and expertise. A caveat to the potential utility of WV3 data for this purpose is that the sensor's
relatively low radiometric resolution, along with atmospheric effects, could reduce the signal-to-noise ratio
of satellite images and cause the radiance signal to saturate in deeper water, with further increases in d no
longer leading to corresponding changes in the image-derived quantity X . In addition, the basic image data
product required some additional georeferencing to ensure alignment with our field measurements, but we
have developed an orthorectification workflow that can be applied to other projects.

In addition to evaluating data acquired by four different types of remote sensing instrument, this study also
quantified the performance of several distinct depth retrieval algorithms. More specifically, we emphasized
OBRA and expanded upon the OBRA framework by considering new forms of the relation between X and d.
As originally formulated, OBRA performed simple linear regressions of X versus d, but coastal researchers
(e.g., Dierssen et al., 2003) and subsequent work in rivers (Legleiter & Overstreet, 2012) showed that incor-
porating an X2 term into the regression could improve depth retrieval from deeper channels. We observed
artifacts in previous applications of these two models, however, primarily negative depth estimates along
shallow channel margins for linear OBRA and overestimates of depth near the banks when using a quadratic
formulation.
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In this study, we added exponential and power X versus d relations as a means of generalizing the calibra-
tion process and circumventing some of the issues associated with simpler linear and quadratic models.
For example, describing the relationship between X and d with an exponential equation (4) avoided the
parabolic shape of a quadratic, which can produce spurious overpredictions of depth for relatively small
values of X (Legleiter et al., 2018), and replaced it with a monotonically increasing X versus d relation that
yielded more realistic estimates in both shallow and deep areas. In addition, an exponential function will
not yield negative depth estimates for small X values, as can occur for linear OBRA. Because the exponen-
tial formulation eliminated these artifacts and provided accuracies as good or better than any of the other
GenOBRA models, our results suggest that an exponential function might be the preferred type of X versus
d relation for depth retrieval.

In addition, our analysis of continuous spectra measured directly in the field indicated that the optimal wave-
lengths for depth retrieval were consistent across the different OBRA variants: a numerator band around
572 nm and a denominator around 592 nm (Figure 6). The ability to distinguish among these two optimal
wavelengths, separated by only 20 nm and both within the green portion of the visible spectrum, represents
an advantage of using hyperspectral rather multispectral image data for bathymetric mapping and could
account for the superior depth retrieval performance of the CASI and Nano imaging systems. This portion
of the spectrum might have been particularly sensitive to variations in depth due to the steep spectral slope
that occurred around 580 nm where scattering-dominated radiative transfer at shorter wavelengths transi-
tioned to absorption-dominated radiative transfer at longer wavelengths, as observed in simulated spectra
produced using a radiative transfer model (Legleiter et al., 2009). Nevertheless, the extensive warm, red
tones indicating high OBRA R2 values not only for the field spectra in Figure 6 but also the various passive
optical image data sets in Figures S1–S3 imply that a broad range of wavelengths could be used for depth
retrieval. These results suggest that even if a sensor's bands do not exactly coincide with the optimal pair of
wavelengths identified via field spectroscopy, accurate depth estimates could be derived from multispectral
images. Similarly, the generalized OPTID analysis summarized in Figure 10 indicated that plots of OBRA
R2 versus cutoff depth were similar across OBRA models, implying that the none of the models performed
noticeably better or worse than any of the others for certain ranges of depth. The choice of an appropriate X
versus d relation thus could be based on a simpler evaluation of overall depth retrieval accuracy rather than
the more involved, iterative OPTID algorithm.

As an alternative to OBRA, we also considered the KNN approach. Kibele and Shears (2016) first applied
this nonparametric technique in the context of spectrally based depth retrieval using WorldView-2 satel-
lite images of a coastal environment and found that KNN produced more accurate depth maps than the
widely used approximate radiative transfer model of Lyzenga (1978). Because KNN is applicable to images
with minimal preprocessing (i.e., no atmospheric correction), the algorithm does not require specialized
remote sensing software or expertise. Similarly, KNN could be applied across a broader range of environ-
mental conditions than more complex, physics-based methods that often involve numerous assumptions.
In our study of the upper Sacramento River, KNN provided a high level of depth retrieval performance
superior to any of the OBRA variants, with the most pronounced improvement observed for the WV3 data
set (Figure 7 and Table 2). These results imply that this machine learning approach could facilitate depth
retrieval, particularly for multispectral satellite images.

The principal drawback of KNN is that the technique is purely empirical and thus inherently site specific
and scene specific, that is, only applicable to the image for which the algorithm is trained. The same is true
for the lowess-based version of OBRA we examined, as depth estimates produced via lowess were essentially
interpolated values generated by smoothing an X versus d scatter plot. Moreover, KNN cannot be used to
extrapolate beyond the range of field-based depth measurements provided as training data. Thus, although
KNN is an appealing alternative approach, the utility of this technique will depend on the need for generality,
which might favor an OBRA model (except for lowess), versus the value of improved local accuracy, which
might take precedence if only a relatively short reach encompassed within a single image is of interest. In
addition, the KNN technique could be generalized to some degree if multiple images could be normalized
to one another.

4.3. Future Research Directions
The appeal of remote sensing is the potential to provide continuous, spatially distributed information on
various river attributes with a level of detail (i.e., resolution) and extent (i.e., coverage) that would be dif-
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ficult, if not impossible, to achieve via traditional field methods. This capability, however, has not been
demonstrated at the larger scales that are of greatest interest for river management applications such as
the spawning habitat inventory of the upper Sacramento River for which the data sets we examined were
acquired. Although this study reported some encouraging results regarding the depth retrieval performance
of three different types of passive optical image data and, to a lesser degree, a bathymetric LiDAR, this anal-
ysis was based on field data collected from a single, short reach. As articulated by Legleiter et al. (2016),
this type of localized validation is not necessarily a complete, rigorous evaluation of the utility of a partic-
ular remote sensing approach at the larger scales at which we ultimately intend to apply the technology.
In other words, producing accurate bathymetric maps for our 1.6-km study reach at the Cottonwood Creek
confluence does not necessarily indicate that a similar level of performance could be achieved over the
entire 112 km of the upper Sacramento River for which remotely sensed data were collected. However, this
reach-scale, proof-of-concept investigation of different platforms, sensors, and depth retrieval algorithms
was a necessary first step toward broader applications of remote sensing.

Given the numerous challenges involved in scaling up from reach to segment to watershed scales, thor-
oughly testing the capabilities of various sensors and algorithms over many tens of hundreds of river
kilometers emerges as a priority for future research. Ensuring consistent, reliable depth retrieval at these
larger scales will require addressing a number of issues, including (1) normalizing images, at least via a basic
radiometric calibration and ideally involving a full atmospheric correction; (2) establishing robust, general
relations between image-derived quantities and water depth that are applicable at a watershed rather than
just a reach scale, even in the presence of variable bottom types, sediment sources, water column optical
properties, riparian vegetation, and shadowing; and (3) assessing the accuracy of any candidate bathymetric
mapping algorithm using field measurements at multiple locations that are spatially distinct from the site
or sites used to train the algorithm (Legleiter et al., 2016). Although this study introduced some new tech-
niques and considered a broader range of sensors and platforms, our initial evaluation was limited to the
single, short reach for which a detailed field-based survey was available. Future work will focus on collect-
ing more extensive field data sets and tackling the myriad challenges involved in scaling up to realize the
full potential of remote sensing to facilitate river research and management.

In pursuing this goal, we will be particularly interested in further testing our ability to map the bathymetry
of long river segments from multispectral satellite image data. In the current study, even basic, uncali-
brated WV3 data provided accurate depth estimates for a short reach encompassed within a single image,
but characterizing habitat conditions along the full extent of the upper Sacramento in which we are
ultimately interested will entail working with a mosaic comprised of multiple satellite scenes. Such a col-
lection of images would need to be standardized to a consistent radiometry. Similarly, the generality of
depth-reflectance relations derived via OBRA and/or a site-specific machine learning algorithm like KNN
will need to be assessed carefully. This analysis also will raise a number of other questions regarding the
field-based sampling requirements for successful, robust calibration, particularly across sites. Similarly,
future studies might attempt to develop methods of predicting depth retrieval performance on the basis of
optical field measurements, which would allow a more quantitative assessment of feasibility before investing
in remotely sensed data.

5. Conclusion
This study evaluated the potential to map the bathymetry of a short (1.6 km) reach of the upper Sacra-
mento River from remotely sensed data acquired from a number of different platforms by several types of
instrumentation and analyzed using a range of depth retrieval algorithms. We collected field measurements
of water depth to assess the performance of the various approaches and our results support the following
principal conclusions:

1. The water column optical properties we measured along the Sacramento were intermediate relative to
other rivers with similar data sets. Our observations of attenuation, absorption, scattering, turbidity,
and constituent concentrations imply that the maximum depth detectable on the Sacramento would be
greater than on sediment-laden, highly turbid streams but shallower than for relatively clear-flowing
rivers.
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2. Accurate depth estimates were derived from a basic WV3 multispectral satellite image data prod-
uct, implying that radiometric calibration and/or atmospheric correction were not essential for depth
retrieval, at least for a single scene for which field measurements were available for calibration.

3. GenOBRA of field spectra and three types of passive optical image data indicated that similar wavelength
combinations were selected for depth retrieval regardless of the functional form employed. Moreover,
a broad range of wavelengths provided strong relationships between the image-derived quantity X and
flow depth d, implying that river bathymetry could be accurately mapped from multispectral images
with a smaller number of wider bands.

4. Differences in overall depth retrieval accuracy among linear, quadratic, exponential, power, and lowess
OBRA models were minor and OPTID lead to similar trends on plots of OBRA R2 versus cutoff depth.

5. An exponential formulation emerged as the preferred version of OBRA for its ability to avoid artifacts
associated with other model types, such as negative depth estimates along channel margins for linear
OBRA and overpredictions of depth near the banks for quadratic OBRA, and greater generality than
lowess.

6. Mean depth retrieval errors were near zero for the WV3 satellite and airborne hyperspectral sensors,
but depths were underpredicted from UAS-based hyperspectral data by up to 8%. The precision of
OBRA-based depth estimates was 14–15% of the mean depth for airborne and UAS-based hyperspectral
data and 18% for the WV3 image.

7. The KNN machine learning algorithm improved depth retrieval performance, most notably by increasing
the OP R2 from 0.74 to 0.87 for the WV3 image, but this technique can only be applied to the image
for which it is trained and does not allow for extrapolation outside the range of depths provided for
calibration.

8. A bathymetric LiDAR system provided the most accurate and precise depth estimates (5% error), but only
for depths up to 2 m. A lack of bottom returns from deeper areas led to large voids in the LiDAR-based
depth map and further research is needed to identify factors leading to the limited range of depths
detected by this sensor.

9. Bathymetric maps produced from all sensors and algorithms were spatially coherent and hydraulically
reasonable, but depth retrieval error maps highlighted overestimates of depth along channel margins
for the WV3 data, underpredictions of pool depth from all of the optical images, and extensive gaps in
the LiDAR coverage. These patterns also were evident in plots of depth retrieval error against measured
depth.

10. OPTID of field spectra and multispectral and hyperspectral images did not lead to any obvious inflection
points on plots of OBRA R2 versus cutoff depth, suggesting that the sensors we evaluated were capable
of detecting depths up to 3.8 m on the Sacramento.

11. The maximum depth detectable by a particular sensor in a specific river of interest imposes an impor-
tant constraint on fluvial remote sensing and a hybrid approach in combination with field-based data
collection focused on the deepest areas of the channel might be a more realistic strategy for mapping
river bathymetry.

12. Selecting an appropriate platform, sensor, and algorithm for depth retrieval requires a clear understand-
ing of project objectives and involves compromises among spatial extent and resolution, operational
flexibility, and cost.

13. Future research will move beyond this reach-scale, proof-of-concept study and tackle the numerous
challenges involved in mapping the bathymetry of much longer river segments from remotely sensed
data. This work will focus on satellite data, approaches to image normalization, and developing robust
calibrations across sites.
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