Advancements in APH-22 Technology with Applications to Protected Species

Kimberly Murray, Michael Jech, Jennifer Johnson, Elizabeth Josephson

NOAA Fisheries, NEFSC 9 March 2017

UAS Can Help Meet NEFSC Goals

To improve the quality, efficiency, and responsiveness of stock assessments

To collect species abundance and distribution data to help identify emerging threats, and assess how they affect distribution, behavior, and species interactions

Approaches to Wildlife Surveys

 Traditional Twin Otter surveys are expensive, infrequent

 UAS surveys less expensive, more frequent, multi-purpose

Gray Seals in the U.S. Northwest Atlantic

Ruskeget Isla

UAS PO Science Review, March 8-10, 2017

Muskeget Gray Seal Pup Counts 2001 – 2016 (single day counts)

UAS PO Science Review, March 8-10, 2017

Advancing UAS to Meet NEFSC Goals

2016

- Seals surveyed on Muskeget Island with a NOAA Twin Otter, fixed-wing eBee, and rotary-wing APH-22
- eBee counts comparable to those from a Twin Otter
- APH-22 imagery superior
- APH-22 was best tool for surveying seal characteristics

2017

- Continue UAS research on Muskeget Island thanks to NOAA UAS Program Office grant
- Goal is to use the APH-22 for surveying AND characterizing the population
- Test enhanced platform and flight modes

APH-22 (aerialimagingsolutions.com)

- Vertical take-off and landing (VTOL) UAS
- ✤ 4.5 lbs, 32" wingspan
- Powered by 4-cell Lithium Polymer battery
- Sensors:
 - E-PM2 Olympus camera in gimbal
 - Laser Altimeter (SF11/C)
 - Infra-red camera (FLIR Tau 324)

Technology Readiness Level (TRL) Advancement

APH-22 System Configuration	Current TRL	Performance Metric	Anticipated TRL if Metric Achieved
Platform and standard camera/video with gimbal and laser altimeter	7	Obtain accurate and precise (within 5%) measurements of seal lengths	8
	7	Identify molt stage (via color, pelage) of animal >=80% of time	8
	7	Ability to acquire video (y/n)	8
	7	Ability to launch and recover from a vessel	8
	7	Ability to fly enhanced platform in waypoint mode	8

Measurements of Seal Lengths

Chart #	Calc size*	Act size	%
			error
7	0.185	0.190	2.6
8	0.167	0.169	1.2
9	0.145	0.150	3.3
10	0.130	0.134	3.0

* Altitude measured via barometric pressure

Seal	Calc size* (m)
1	1.28
2	0.90
3	0.85
4	0.88

Identifying Pup Molt Stage

UAS PO Science Review, March 8-10, 2017

Proportion

Systematic Sampling

Simulated flight settings:

- 1 hour 29 flight time
- 100 m altitude
- 20 mm lens
- Fly 5 m/s speed
- 40% overlap in imagery
- Requires 9 batteries

Documenting Anthropogenic Impacts

Entanglements

Brand marks

UAS PO Science Review, March 8-10, 2017

Impact to Society

A fully operational UAS system at the NEFSC would allow us to routinely monitor pinniped populations at key index sites

This would allow us to measure whether or not we are meeting recovery goals under the MMPA

Key Scientific/Technical Challenges Flight

- Full survey of the island with APH-22 has yet to be achieved
- Accessing island by small boat in winter poses safety issues
- Cold weather shortens battery life
- Changing out sensors (cameras) can be timeconsuming

Key Scientific/Technical Challenges Sensors

Laser Altimeter Evaluation

Key Scientific/Technical Challenges Data processing

- Accurate counts and estimates of variance
- Accurate size/morphological measurements
- Automated counts and measurements?
- Data storage

Future Directions

APH-22 paired with fixed wing platforms to increase coverage while maintaining hovering capability

Surveying out of Line of Sight for longer endurance – Could we fly from Nantucket?

Flying multiple UASs simultaneously to increase efficiency of covering the island

Thank you!

• To NOAA UAS Program Office for supporting our research in 2017

• To AOC for supporting our missions

