

NOAA Unmanned Aircraft Systems (UAS) Program Activities


John Walker
John "JC" Coffey

January 2015

NOAA UAS Program Vision & Strategy

Vision

 UAS will revolutionize NOAA observing strategies comparable to the introduction of satellite and radar assets decades earlier

Goals

- Goal 1: Increase UAS observing capacity
- Goal 2: Develop high science-return UAS missions
 - High impact weather monitoring,
 - Polar monitoring
 - Marine monitoring
- Goal 3: Transition cost-effective, operationally feasible UAS solutions into routine operations

Program Progress

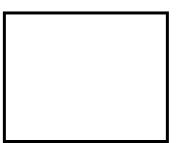
Conducted UAS market survey and developed data base of UAS performance capabilities and costs

Developed UAS Analysis of Alternatives & Strategy:

- High altitude long endurance Global Hawk
- Medium altitude long endurance Predator or Ikhana
- Low altitude long endurance ScanEagle
- Low altitude short endurance Puma and Vertical Take Off and Landing (VTOL)
- Air-Launched Coyote, Cutlass, GALE, SBIR
- USV EMILY

Developed technology review process for funded projects

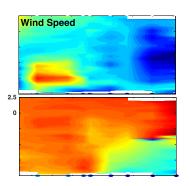
Supported operator training / initial concept of operations

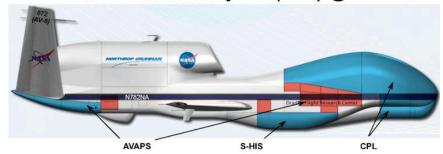


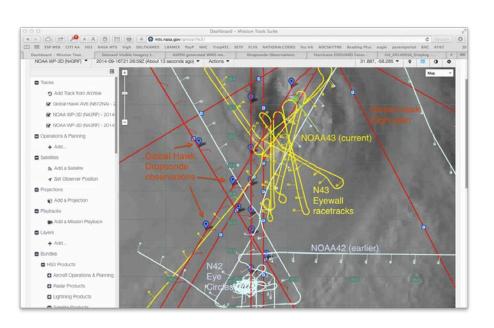
High Impact Weather Monitoring

Key Accomplishments

- Observations of oceanic weather systems in Atlantic, Arctic, and Pacific using NASA Global Hawk
- Development of Global Hawk dropsonde system with NSF
- Lower Mississippi River Forecast
 Center demonstration with Puma and Altavian
- Aircraft-launched UAS development through SBIR Phase I
- Development of Fire Weather UAS through NSF collaboration
- Development of EMILY unmanned surface marine vehicle
- Two peer-reviewed journal articles published in 2014







NASA Hurricane Severe Storm (HS3) & NOAA Sensing Hazards Using Operational Unmanned Technology (SHOUT) Missions

HS3 Environmental Payload (AV-6) @ WFF '12

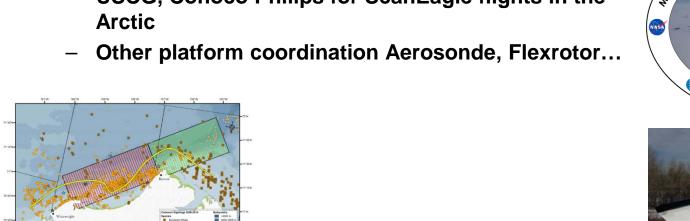

Environment Observations

- Profiles of temperature, humidity, wind, and pressure
- Cloud top height
- Cloud top temperature and profiles of temperature and humidity

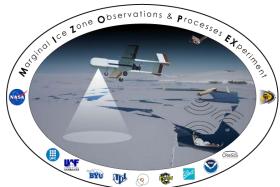
Hurricane Edouard 9/16/14

- NE of St Croix
- Buoy Drops Highlighted
- NOAA's P-3s, GIV and GH Flying this week
- Watch our flights:

http://airbornescience.nasa.gov/tracker/



Polar Monitoring

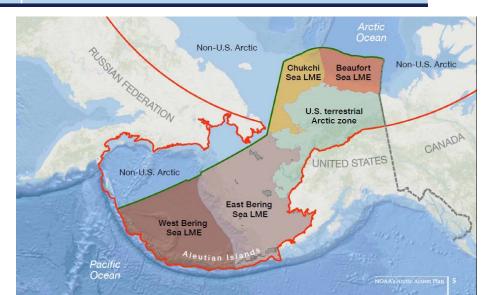


Key Accomplishments

- Peer-reviewed journal article based on black carbon mission using Manta in Norway
- Deployment of three different UAS during Marginal Ice Zone Experiment in partnership with NASA
- Puma UAS deployed from US Coast Guard Healy Ice Cutter ship for marine monitoring and oil spill detection with ONR, AeroVironment
- Development of partnership with UAF, US Navy,
 USCG, Conoco Philips for ScanEagle flights in the Arctic







National / NOAA Arctic Vision & Strategy

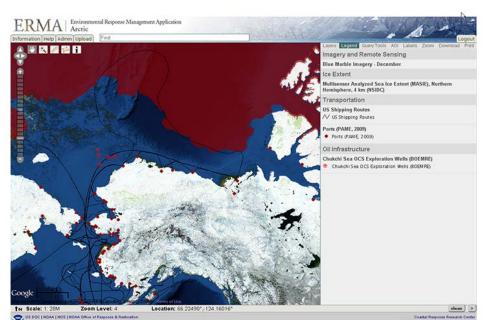
National Strategy for the Arctic Region — lines of effort —	NOAA's Arctic Vision and Strategy — strategic goals —
Advance U.S. security interests	Forecast sea ice
	 Improve weather and water forecasts and warnings
Pursue responsible Arctic region stewardship	 Strengthen foundational science to understand and detect Arctic climate and ecosystem changes
	 Improve stewardship and management of ocean and coastal resources in the Arctic
	 Advance resilient and healthy Arctic communities and economies
Strengthen international cooperation	Enhance international and national partnerships

NOAA USCG Healy Deployment, Operational and Scientific Goals

- ✓ Conduct Puma AE "due regard" operations from USCG (Icebreaker) Healy
 - ✓ Water and Ice Landings
 - ✓ Deck Landing
 - ✓ Net Capture System
- ✓ Conduct Intelligence, Surveillance, and Reconnaissance (ISR) Operations Stream Full Motion Video (FMV), EO and IR from Puma AE for
 - √ Sea ice ridge detection/monitoring
 - o Producing a Digital Elevation Map (DEM) of ice ridge and surrounding area
 - ✓ Marine and marine mammal monitoring
 - ✓ Usefulness in search and rescue (emergency response) scenarios
 - ✓ Detection and monitoring of oil spilled from ship or oil exploration
 - ✓ Detection and monitoring of marine debris from ship
 - Preparation for future boundary layer research from sUAS
- ✓ Utilize the Environmental Response Management Application (ERMA)
- ✓ Coordinate with ONR Marginal Ice Zone Experiment (MIZOPEX) FY14
- ✓ Coordinate with the UAF for ScanEagle flight operations coordination and data exchange

ISR Missions including Oil Spill & SAR

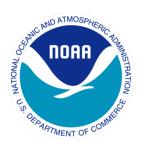
- **✓** Sea ice ridge detection/monitoring
- **✓** Marine and marine mammal monitoring
- **✓** Usefulness in search and rescue scenarios
- **✓** Detection and monitoring of oil spilled from ship
- **✓** Detection and monitoring of marine debris from ship



ERMA Coordination

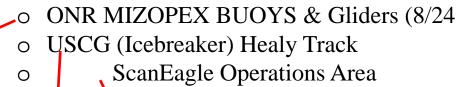
- ✓ ERMA® is an online mapping tool that integrates both static and real-time data, such as Environmental Sensitivity Index (ESI) maps, ship locations, weather, and ocean currents, in a centralized, easy-to-use format for environmental responders and decision makers. ERMA enables a user to quickly and securely upload, manipulate, export, and display spatial data in a Geographic Information System (GIS) map.
- ✓ Second year participations through the UAS Program.

Visit Arctic ERMA.



Software and Datasets

- •ADIOS, oil weathering model.
- ERMA , online mapping tool for environmental response data, adapted to a variety of regions.
- GNOME, oil spill trajectory model.
- •GOODS, a tool that helps GNOME users access base maps, ocean currents, and winds.
- NUCOS, a unit converter that includes units unique to oil spill response.
- *Spill Tools, a set of three programs: the Mechanical Equipment Calculator, the In Situ Burn Calculator, and the Dispersant Mission Planner.
- <u>Trajectory Analysis Planner</u>, oil spill contingency planning software.
- Environmental Sensitivity Index (ESI) maps and data, concise summaries of coastal resources that may be at risk in a spill incident.


Healy Planned Track, MIZOPEX, ScanEagle Op Areas

Rover - used to intercept UAS Platform Signals

ScanEagle Operational Assessments (2008-2014)

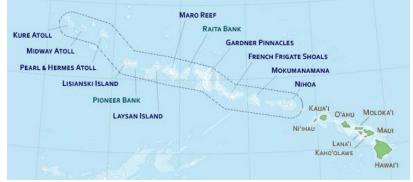
- (Goal) Fly a combination of different types of remote sensing instruments for atmospheric research, marginal ice zone, polar & marine monitoring
- (Outcomes) Operational Coordination and Operations
 - Maritime and Ice Seal Survey from MacArthur (2009)
 - Atmospheric Testing from NSWC Dahlgren (2012)
 - Atmospheric Research Deployment from R/V Revelle (2012)
 - Atmospheric Testing from NSWC Dahlgren (2013)
 - Atmospheric Research Deployment from R/V Knorr (2013)
 - Marginal Ice Zone Experiment (MIZOPEX) for Oliktock Pt (2013)
 - Data Management and Coordination with ERMA (2014)
 - -Maritime survey Data Exchange with UAF & Conoco Philips (2013-2014)
 - -Alaskan Wildfire Night / Beyond-Line-of-Sight Flights 2014
 - Government, Academia and Industry Platform Updates and Coordination (2014)

"Flux" payload	P = 1 2 2 21	Krypto
Instrumentation	Measurement	hygromet
9-port turbulence/gust probe	Winds, momentum fluxes, other fluxes (vertical wind est. accuracy 2.6 cm/s)	SST , RH
Laser altimeter	Surface waves, a/c control	Winglet catch mechanism
Humidity/temperature	H/T profiles and bulk fluxes	Turbulen
SST sensor	SST, frontal processes	Nadir pro
Fast response optical temp. sensor	T, sensible heat flux	Liuai
Krypton hygrometer	H ₂ O covariance fluxes	
DAQ system	Data acquisition	200
DGPS	georeferencing, winds, a/c control	-
IMU – LN200	georeferencing, winds	

Marine Monitoring

Key Accomplishments

- Acquisition and deployment of two Puma UAS
- Two years of Puma missions in partnership with National Marine Sanctuaries Program
- Development of Puma Transition Plan in collaboration with OMAO and NOS
- Demonstration of NASA Ikhana and observing capabilities for long distance monitoring of Hawaiian marine monument
- Development of medium altitude UAS observing capabilities for gravity measurements and coastal mapping through SBIR Phase II study



Hawaii Activities

Papahanaumokuakea Marine National Monument

362,073 square kilometers of the Pacific Ocean

NOAA PUMA

Take Aways & **Operational Assessment**

- Arctic is a Challenging Environment
 - Platform flight envelope must be expanded
 - Platform recovery process and sensors must continue to be improved
 - "Due Regard" operations must be expanded
- Partnerships are crucial (Maritime Strategy)
 - People, property and platforms (data captured) are valuable
 - Must maximize operations and date sharing opportunities for safety's sake
- S&T to R&D to T&E to Operations
 - Simple but not easy!
 - SBIRs, CRADAs, MOUs, OAs

Issues & Barriers to Success

- Unmanned Systems have been "Wildly successful!"
- Plenty of issues but, "We have chosen to admire the problem."
- Issues & Barriers to Success
 - Privacy
 - FAA Regulations & Access Airspace, Airworthiness, Quals
 - Program Management
 - Engineering, Logistics, T&E, Operations, Contracting...
 - Cost, Schedule, Performance, Risk, Requirement Traceability, Commonality
 - Administrative hurdles to cooperation & asset pooling
 - MOUs & IAAs
 - Buying data or capability (assets, personnel, infrastructure)?
 - Understanding utilization rates and metrics
 - □ S&T... R&D... "Three months of install and ground test for 1 Flt-Hr
 - ☐ Flt Hours vs On-station Hours vs Sensor Hours vs Data Hours vs Used DH


Success!!!

- R&D to Operations
 - Optimized existing infrastructure
 - Airspace Access
 - Dangerous, Dirty, Dull, Denied
 - Efficient, Effective, Economical and Environmentally Friendly
 - Common and Pooled Assets & Operators
 - Logistic, Configuration Management, Training
 - Data Standardization, Quality, Storage and Cataloging
- Affordable & Environmentally Friendly
 - Autonomous
 - Multiple platforms controlled by single operator
 - Uses 10% of the fuel or "new fuels" or "no fuel"

Contact Information

UAS Web Site: http://uas.noaa.gov/

Questions should be directed to:

Robbie Hood - NOAA UAS Program Director (robbie.hood@noaa.gov / 303-905-3411)

John "JC" Coffey - NOAA UAS Program Office (john.j.coffey@noaa.gov / 904-923-1709)

John Walker- NOAA UAS Program Office (john.r.walker@noaa.gov / 901-493-0313)