

QUANTIFYING RESTORATION OF JUVENILE SALMON HABITAT WITH AN UNMANNED AERIAL VEHICLE SYSTEM

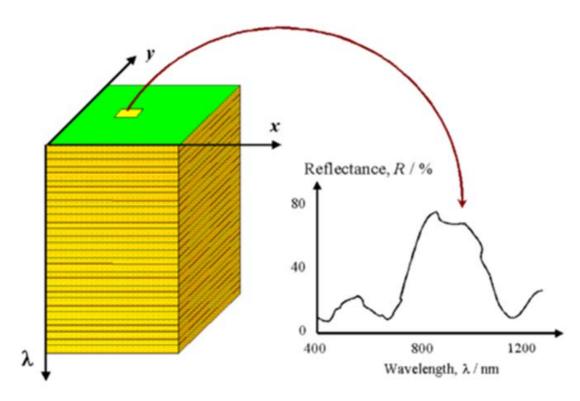
~MISSION CONCEPT REVIEW~

Curtis Roegner – NOAA Fisheries Amy Borde, Andre Coleman – PNNL George Pierce, Joe Aga, Robert Erdt – RykaUAS

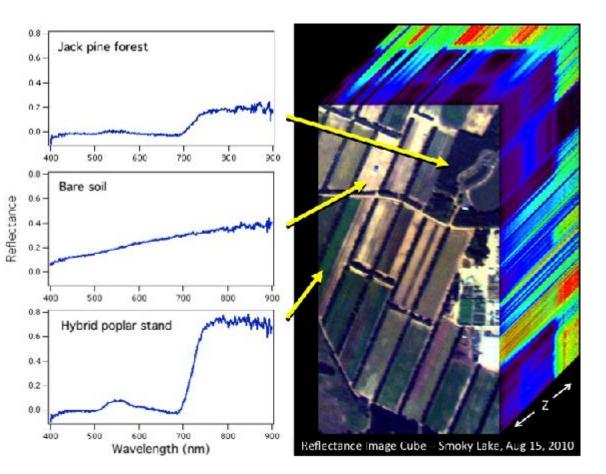
3 AUGUST 2016

PROJECT SCOPE

- 1. WETLANDS DIRECTLY BENEFIT ENDANGERED JUVENILE SALMON BY SUPPORTING DIVERSE VEGETATION COMMUNITIES.
- 2. RESTORATION OF DEGRADED WETLANDS LEADS TO VEGETATION AND TOPOGRAPHIC CHANGES THAT REQUIRE COMPREHENSIVE MONITORING — DIFFICULT TO ACCOMPLISH W/TRADITIONAL MEANS.
- 3. OUR PROJECT: DEVELOP REMOTE SENSING TECHNIQUES EMPLOYING HYPERSPECTRAL IMAGERY ON A UAS TO MONITOR WETLAND RESTORATION TRAJECTORIES.



PROJECT GOALS


- 1. EQUIP A UAV SYSTEM WITH A HYPERSPECTRAL IMAGER.
- 2. CONSTRUCT A SPECTRAL LIBRARY OF PLANT COMMUNITIES AND ENVIRONMENTAL ATTRIBUTES.
- *3. Develop* data analysis routines and analytics for critical metrics.
- *4. CONDUCT* FLIGHT OPTIMIZATION AND EVALUATION MISSIONS AT SELECTED TIDAL WETLAND SYSTEMS.
- 5. CODIFY PROTOCOLS FOR REMOTE SENSING TO AID EVALUATION OF WETLAND RESTORATION TRAJECTORIES AND MANAGEMENT DECISION MAKING.

Hyperspectral Datacube: X * Y * λ

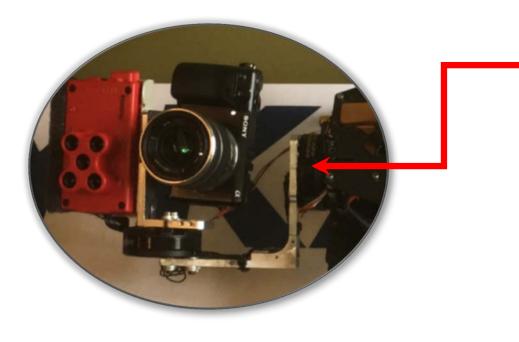
SPECTRAL SIGNATURES

Principles of Remote Sensing - Centre for Remote Imaging, Sensing ...www.crisp.nus.edu.sg

TASK 1: EQUIP UAS WITH HYPERSPECTRAL IMAGER

BAYSPEC OCI-F (WWW.BAYSPEC.COM)

- PUSH-BROOM HYPERSPECTRAL CAMERA
- 14 cm x 7 cm x 7 cm; ~570 g
- 400-1000 NM VNIR WAVELENGTH RANGE
- 110 SPECTRAL BANDS


	Specifications		
Operation Mode	Push-broom		
Spectral Range	400-1000 nm		
Number of Spectral Bands	Up to 110		
Spectral Resolution	5-7 nm FWHM		
Spatial Pixels	800 px X scan-length		
Standard Lens2	16 mm (21° FOV)		
Exposure Time	20 μs - 1 s		
Wavelength Calibration	Factory calibrated (calibration fixed permanently)		
Objective Lens Interface	C-mount		
Frame Rate	Up to 50 frames/sec		
Software	Included with BaySpec's SpecGrabber for camera control and data acquisition, and CubeCreator for hyperspectral data processing		
Data Format	Hyperspectral cube (ENVI-BSQ), Color image (BMP), Band image (BMP), ROI spectra (CSV format)		
Operating Temperature	0°C to 50°C		
Power Consumption	< 3 W (USB 3.0 power)		
Weight	~ 570 g (including standard lens)		
Size	14 cm x 7 cm x 7 cm (including standard lens)		
Camera Interface	USB 3.0		

MATRIX QUAD – N52RY

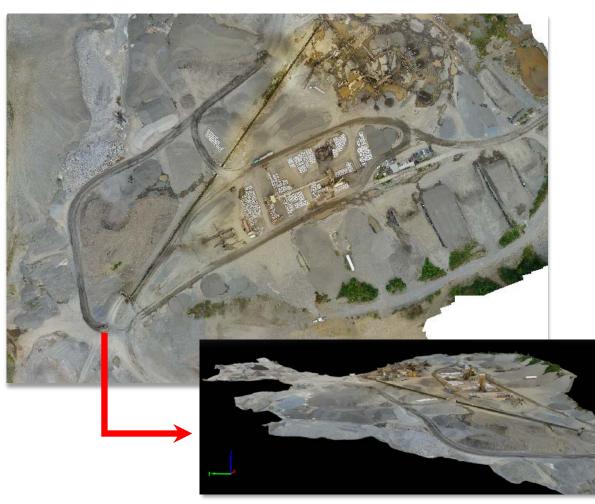
CONTROL

- APM AUTOPILOT
- U-BLOX NEO-M8 GPS (WITH REDUNDANCY)
- MISSION PLANNER & UGCS FLIGHT CONTROLLER
- DUAL CHANNEL GPS LOGGER

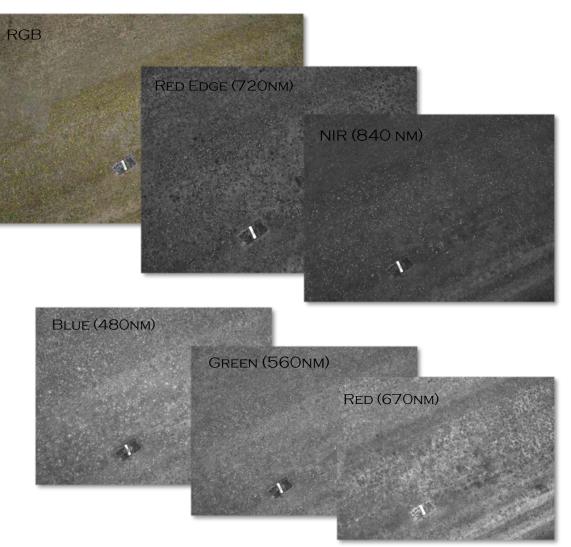
PAYLOAD CAPABILITIES

- MODIFIED GIMBAL TO ALLOW MULTIPLE CAMERAS
- SYNCED IMAGES (STEREO IMAGE CAPTURE)
- CLOSED LOOPED GEO-TAGGING

FLIGHT TIME- 18 MINUTES (FULLY LOADED)/50-65 ACRES AT 1.3CM GROUND SAMPLING DISTANCE


BATTERY – 16,000mah max amps 20c

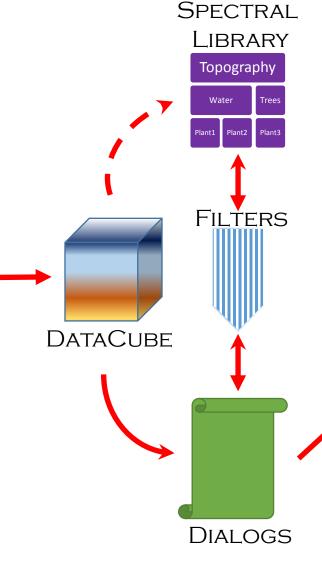
RYKA OUAS

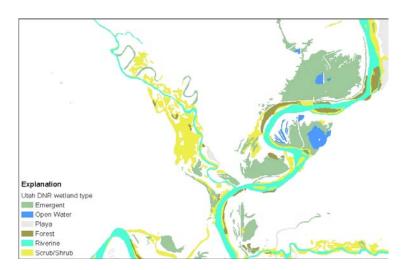

MISSION CAPABILITIES

HI-RESOLUTION 2D ORTHO (<1.5CM GSD)

- >200 ACRES
- .5IN US SURVEY FT. RMS ERROR.

STEREO DATA SET FROM MATRIX/MULTI-SPECTRAL


TASK 2: SPECTRAL LIBRARY TASK 3: ANALYTICS Topography DATA ACQUISITION OF SPECTRAL LIBRARY: CATALOG OF Trees Water **VEGETATION AND OBJECT-SPECIFIC SPECTRA** TOPOGRAPHIC FEATURES FILTERING: IDENTIFICATION OF UNIQUE SPECTRAL SIGNATURES **DIALOGS FOR OUTPUT METRICS:** PLANT VEGETATION SPECIES/COMMUNITY CHANNEL MORPHOMETRICS TIDAL INUNDATION EXTENT • QUANTIFICATION OF LARGE WOODY DEBRIS • CHANGE ANALYSIS - SEASONAL, INTERANNUAL



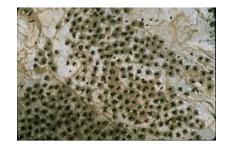
TASK 4: VERIFICATION FIELD TRIALS SURVEY WETLANDS TEST PROTOCOLS & ANALYTICS

OUTPUT: MAPS & STATISTICS

VEGETATION MAPS OVERLAID WITH TERRAIN MAPS IN GIS (BUT MUCH HIGHER RESOLUTION THAN THIS EXAMPLE!!)

END-USER & TECHNOLOGY TRANSFER: REMOTE SENSING OF VARIED WETLAND SYSTEMS

<u>NOTE</u>: TECHNIQUES APPLICABLE TO WIDE VARIETY OF ENVIRONMENTS



ALGAL BLOOMS

SEAGRASSES

BIRD COLONIES

TASK 5: PROJECT DELIVERABLES:

1) ESTABLISHMENT OF AN UPDATEABLE, OPEN SOURCE *SPECTRAL LIBRARY* FOR ESTUARINE/WETLAND ENVIRONMENTS;

2) *PROTOCOLS FOR FLIGHT OPERATIONS* INCLUDING APPROPRIATE FLIGHT SPEED AND SCALE IMPACTS DUE TO SAMPLE ALTITUDE

3) *PROTOCOLS FOR IMAGE PROCESSING*, *ANALYTICS, AND APPLICATIONS* TO WETLAND FEATURE EXTRACTION, VEGETATION CLASSIFICATION, AND HYDROLOGIC CHARACTERIZATION

SUMMARY OF FLIGHT OPS

- TASK 2: DIRECTED FLIGHT MISSIONS TO IMAGE SPECIFIC OBJECT CLASSES (VEGETATION, WATER, WOODY DEBRIS, ECT)
- TASK 4: SURVEY FLIGHT PATTERN WITH GPS WAYPOINTS.

TECHNOLOGY READINESS LEVEL

Transition Index	Technology Readiness Level	Description		
Research	TRL 1	Basic or fundamental research		
Research	TRL 2	Technology concept and/or application		PROJECT START
Development	TRL 3	Proof-of-concept		
Development	TRL 4	Concept validated in laboratory		
Development	TRL 5	Concept validated in relevant environment		
Demonstration	TRL 6	Prototype demonstration in relevant environment	-	YEAR 1
Demonstration	TRL 7	Prototype demonstration in operational environment		
Demonstration	TRL 8	System demonstration in an operational environment		
Application	TRL 9	System totally operational	-	YEAR 2 (if funded)