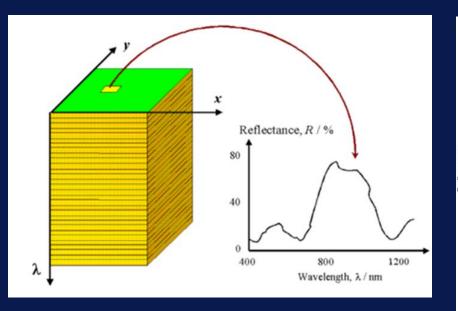
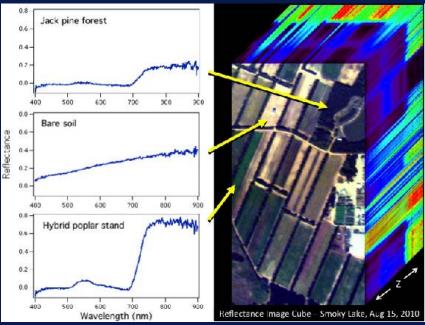
QUANTIFYING RESTORATION OF JUVENILE SALMON HABITAT WITH AN UNMANNED AERIAL VEHICLE SYSTEM

Curtis Roegner NOAA Fisheries 8 March 2017

Project Background


- Wetlands directly benefit endangered juvenile salmon by supporting diverse vegetation communities.
- 2. Restoration of degraded wetlands leads to vegetation and topographic changes that require comprehensive monitoring difficult to accomplish w/traditional means.
- Our project: Develop remote sensing techniques employing hyperspectral imagery on a UAS to monitor wetland restoration trajectories.

Project Goals


- 1. <u>Equip</u> a UAV system with a hyperspectral imager.
- 2. <u>Construct</u> a spectral library of plant communities and environmental attributes.
- 3. <u>Develop</u> data analysis routines and analytics for critical metrics.
- 4. <u>Conduct</u> flight optimization and evaluation missions at selected tidal wetland systems.
- 5. <u>Codify</u> protocols for remote sensing to aid evaluation of wetland restoration trajectories and management decision making

Principals of Hyperspectral Imagery

Hyperspectral Datacube: X * Y * λ

Spectral signatures used for object identification

Principles of Remote Sensing - Centre for Remote Imaging, Sensing ...<u>www.crisp.nus.edu.sg</u>

TASK 1: Equip UAS with a hyperspectral imager

BaySpec OCI -F (www.bayspec.com)

- push-broom hyperspectral camera
- 14 cm x 7 cm x 7 cm; ~570 g
- 400 -1000 nm; VNIR wavelength range
- 110 spectral bands

UAS SPECIFICS

Control

- APM Autopilot
- U-Blox Neo-M8 GPS (with redundancy)
- Mission Planner & UGCS flight controller
- Dual Channel GPS logger

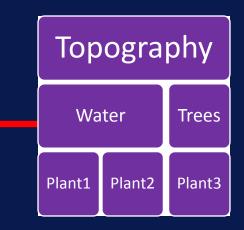
Payload Capabilities

- Modified Gimbal to allow multiple cameras
- Synced images (Stereo image capture)
- Flight time- 18 Minutes (fully loaded)/50-65 Acres at 1.3cm Ground sampling distance
- Closed looped Geo-tagging
- Battery 16,000mah max amps 20c

UAS SPECIFICS

TASK 1 Progress:

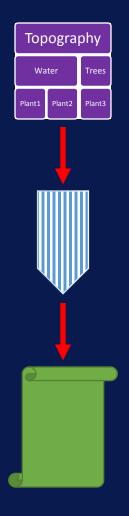
- Integrated imager & gimbal onto UAS
- Performed initial test flights
- Ready for field trials



TASK 2: CONSTRUCT A SPECTRAL LIBRARY

<u>Data Acquisition</u> of Vegetation and Topographic features: Spectral signatures

<u>Spectral Library</u>: Catalog of object-specific spectra



TASK 2: CONSTRUCT A SPECTRAL LIBRARY

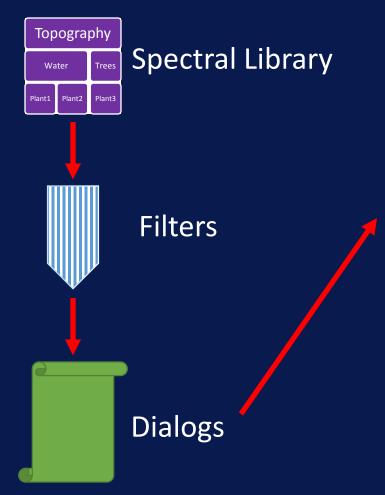
TASK 2 Progress:

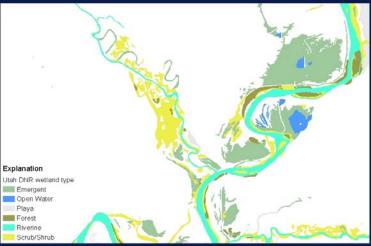
- Acquired /submitted permits including:
- FAA approvals for restricted airspace
- Certificate of authority (COA) Approved for Lewis and Clark National Park
- Awaiting on NPS approval flight
- First field trials scheduled for March-April

TASK 3: DEVELOP ANAYLTIC ROUTINES

<u>Spectral Library</u>: Catalog of object-specific spectra

Filtering:

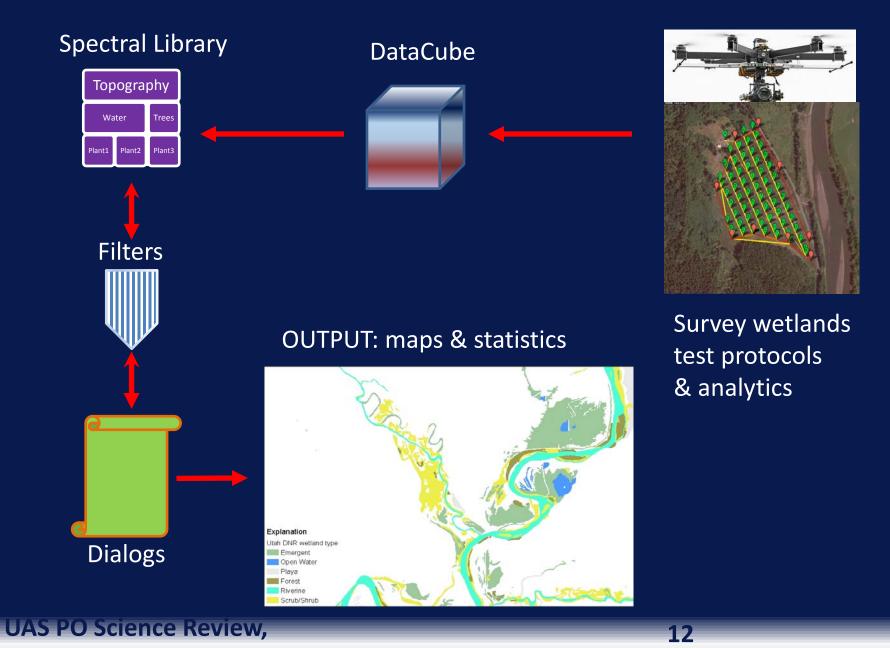

Identification of unique spectral signatures


Dialogs for Output Metrics:

- Vegetation species/community
- Introduced species
- Channel morphometrics
- Tidal inundation extent
- Change analysis Pre / post restoration

- Seasonal-interannual

TASK 3: DEVELOP ANAYLTIC ROUTINES



OUTPUT: maps & statistics

- Vegetation maps overlaid with terrain maps in GIS
- Percent cover of plants/terrain
- Input for models

TASK 4: Verification field trials

March 8-10 2017

TASK 5: Project deliverables

1) Establishment of an updateable, open source spectral library for estuarine/wetland environments;

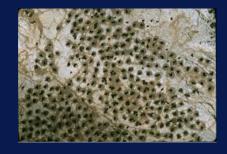
2) Codify protocols for flight operations including appropriate flight speed and scale impacts due to sample altitude;

3) Codify protocols for image processing, analytics, and applications to wetland feature extraction, vegetation classification, and hydrologic characterization

End-user & technology transfer: Remote sensing of varied wetland systems

End-user & technology transfer:

Techniques applicable to wide variety of environments



Algal Blooms

Seagrasses

Bird colonies Sealion haulouts

Technology Readiness Level

Transition Index	Technology Readiness Level	Description	
Research	TRL 1	Basic or fundamental research	-
Research	TRL 2	Technology concept and/or application	
Development	TRL 3	Proof-of-concept	START:
Development	TRL 4	Concept validated in laboratory	6/ 2016
Development	TRL 5	Concept validated in relevant environment	
Demonstration	TRL 6	Prototype demonstration in relevant environment	STATUS
Demonstration	TRL 7	Prototype demonstration in operational environment	
Demonstration	TRL 8	System demonstration in an operational environment	
Application	TRL 9	System totally operational	

Collaborators

Dr. Curtis Roegner – Principal Investigator

Joe Aga – Pilot and aircraft fabrication George Pierce – Pilot Robert Erdt – GIS and image analysis

Amy Borde – Senior Scientist wetlands naturalist Andre Coleman – Remote sensing and spatial modeling

Carla Cole – Natural Resources Manager

Funding and Support

UASPO: Robbie Hood Justyna Nicinska John Coffey

