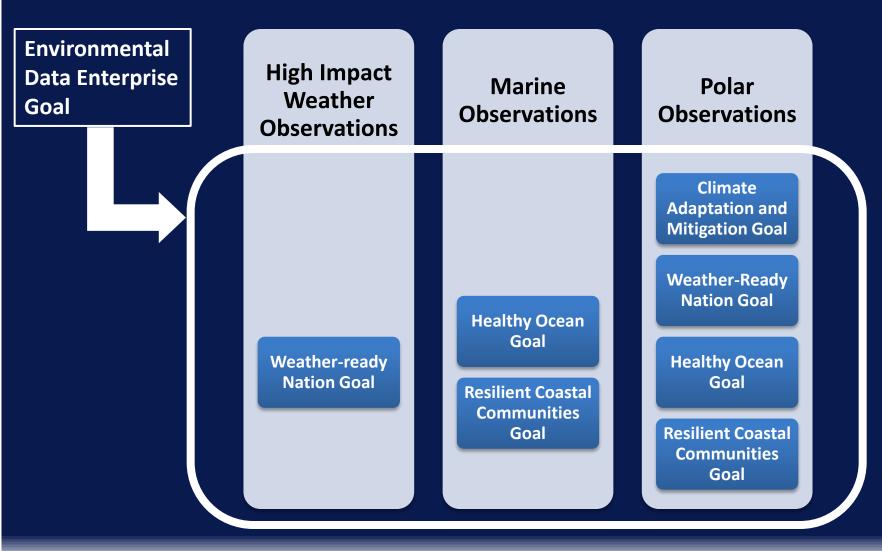
Overview of the NOAA Unmanned Aircraft Systems (UAS) Program

Robbie Hood Director, NOAA UAS Program 8 March 2017



BACKGROUND

Motivating Factors for Using Unmanned Aircraft Systems (UAS)

What Missions?	What Benefits?	Why Now?
 Dull Dirty Dangerous Remote 	 Very high and low altitudes Vertical profiling Long endurance 	 Improving flight performance Increasing payload options
	 Long range Quiet Rapid response 	 Improving affordability Increasing access to airspace

Relationship of UAS Program to NOAA Goals and Enterprise Objective

NOAA UAS Strategic Vision and Goals (FY09 – FY15)

• Vision

 UAS will revolutionize NOAA observing strategies by 2015 comparable to the introduction of satellite and radar assets decades earlier

• Goals

- Goal 1: Increase UAS observing capacity
- Goal 2: Develop high science-return UAS missions
 - High impact weather observations
 - Marine observations
 - Polar observations
- Goal 3: Transition cost-effective, operationally feasible
 UAS solutions into routine operations

External Panel Membership and Expertise

Panel Members

High Impact Weather Observations

- Dr. Linnea Avallone, Chair
- Dr. Gary Jedlovec
- Dr. Daniel Eleuterio

• Marine Observations

- Mr. Robert Winokur
- Mr. Mark Bathrick
- Dr. Bruce Quirk

• Polar Observations

- Dr. Peter Milne
- Dr. Scott Harper
- Dr. Sally McFarlane

Expertise

- Management of science or aviation programs
- Development or evaluation of Earth science observing applications
- Funding or leading scientific aircraft field experiments
- Transition of observing strategies to routine application or operations
- Developing UAS technology, policy, or operational procedures

UAS PRIMER

Long Endurance UAS

- Maximum Altitude 60,000 ft
- Maximum Endurance 24 hrs
- Maximum Payload Weight 1200 lbs

High Altitude Long Endurance

• Maximum Altitude 20,000 ft

- Maximum Endurance 24 hrs
- Maximum Payload Weight 13.5 lbs

Low Altitude Long Endurance

- Maximum Altitude 40,000 ft
- Maximum Endurance 24 hrs
- Maximum Payload Weight 400 *lbs (internal) – 2000 lbs (external)*

Medium Altitude Long Endurance

- Maximum Altitude 24,000 ft
- Maximum Endurance 15 hrs
- Maximum Payload Weight 42 lbs

Hybrid Fixed and Rotary Wing

Short Endurance UAS

- Maximum Altitude 1000 ft
- Maximum Endurance 2 hrs
- Maximum Payload Weight 2 lbs

Low Altitude Short Endurance

- Maximum Altitude 20,000 ft
- Maximum Endurance 2 hrs
- Maximum Payload Weight 0.9 lbs

Aircraft-Launched

- Maximum Altitude 3280 ft
- Maximum Endurance 1.4 hrs
- Maximum Payload Weight 1.7 lb

Vertical Takeoff and Landing

- Maximum Altitude 100,000 ft
- Maximum Endurance 0.5 hrs
- Maximum Payload Weight 3 lbs

Balloon-Launched

UAS PROGRAM BASICS

NOAA UAS Program Staff

Program Management

Manages the activities, staff and budget of the program; leads the development of strategic direction and priorities for the program

- Robbie Hood Federal, OAR Headquarters (100% FTE)
- Dr. Justyna Nicinska Federal, OAR Headquarters (100% FTE)

Scientific Assessment Team

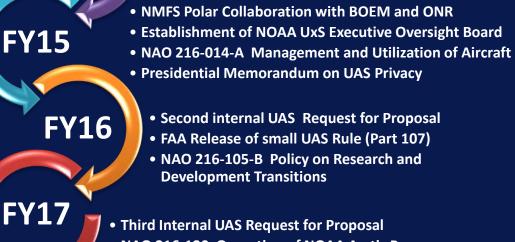
Interacts with science stakeholders to understand observing requirements, evaluate data impact, assess science benefit, and coordinates projects

- Dr. Gary Wick Federal, OAR Earth System Research Laboratory (75% FTE)
- John Walker Contractor, Cherokee Nation Technologies (100% FTE)
- Dr. Peter Black Contractor, Cherokee Nation Technologies (100% FTE)

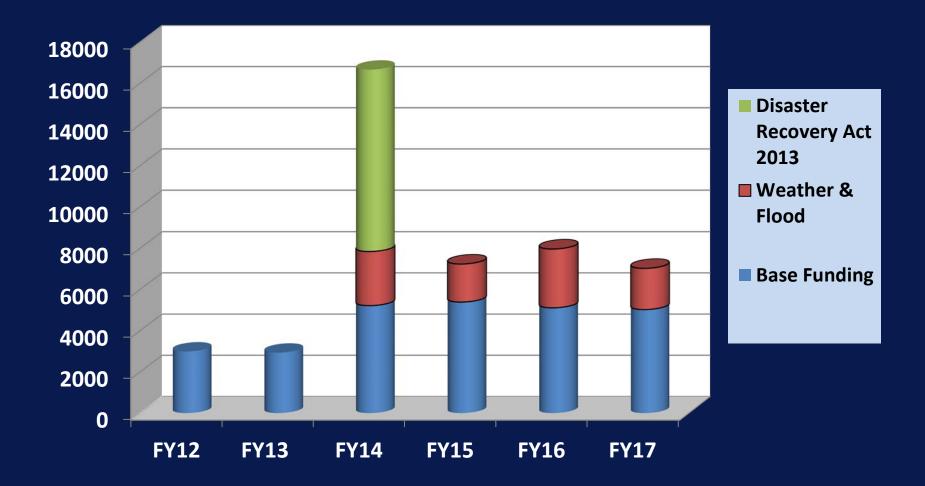
Performance Assessment Team Conducts market surveys, monitors readiness to meet requirements, evaluates cost and operational feasibility, and coordinates projects

- Phil Kenul Contractor, TriVector Services (100% FTE)
- JC Coffey Contractor, Cherokee Nation Technologies (100% FTE)

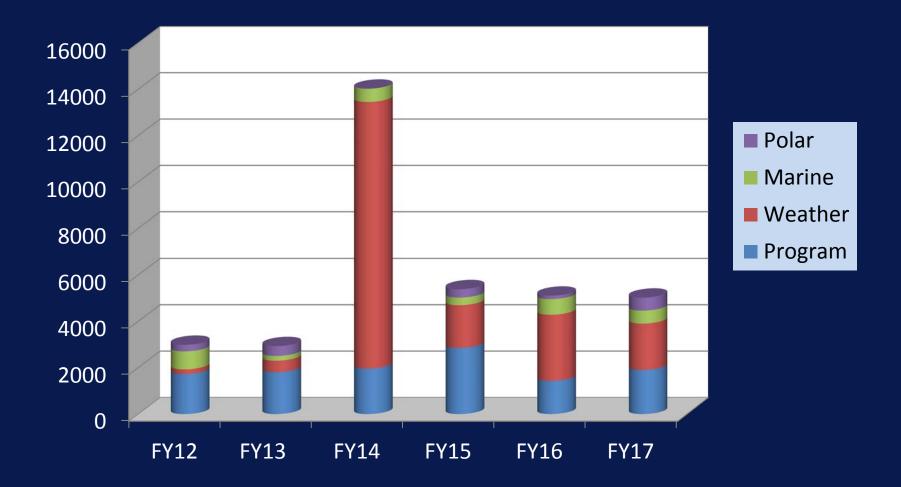
History of Key Events


Period of UAS Program Push of UAS Capabilities

FY14


- Puma Acquisition
- First internal UAS Request for Proposal
- NASA Polar Monitoring Collaboration
- Start of 4-year USCG Collaboration
- Start of Observing System Simulation Experiment Development
- Budget increase for Weather and Flood Studies leading to SHOUT and SHOUT4Rivers projects
- NASA Ikhana Marine Monitoring Collaboration

Period of Line Office Pull for UAS Capabilities



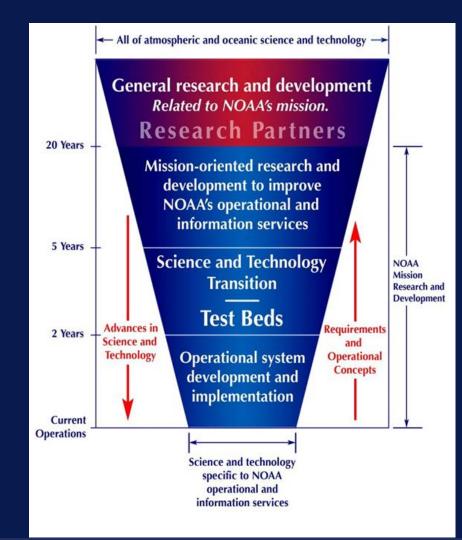
• NAO 216-120 Operation of NOAA Arctic Program

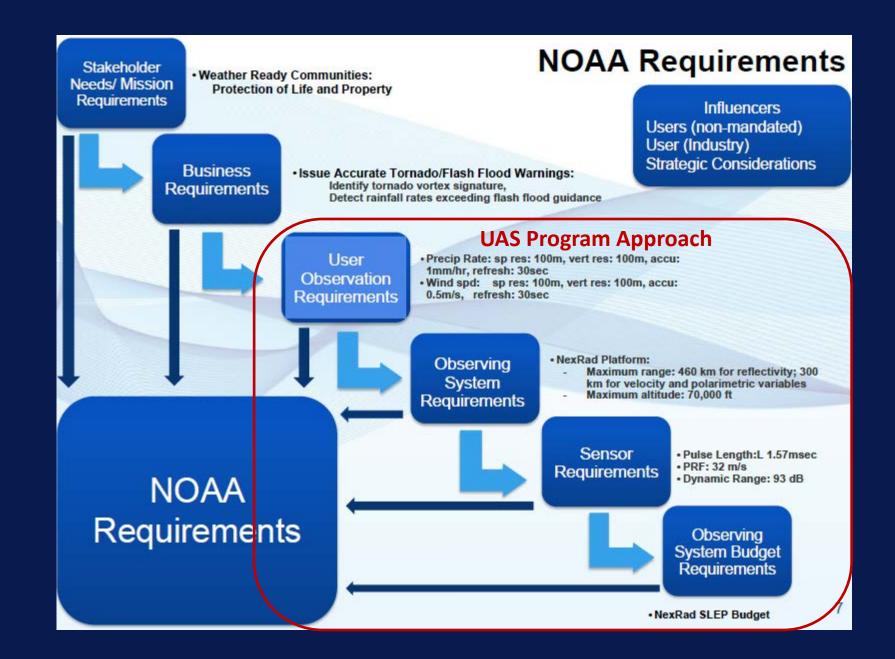
Annual UAS Program Budget (In Millions of Dollars)

Annual UAS Program Investments (In Millions of Dollars)

READINESS FOR TRANSITION TO RESEARCH OR OPERATIONAL APPLICATION

OAR Strategic Plan


* Aims


- Climate Adaption and Mitigation
- Weather-Ready Nation
- **o** Healthy Oceans
- Resilient Coastal
 Communities and
 Economies
- Across the Enterprise-Observing, Modeling, and Engaging for All Goals

Activities

- Research Yields ideas, knowledge, and understanding of systems
- Development Yields inventions, techniques, and engineering of systems
- Transition Yields
 outcomes for stakeholder,
 either within NOAA or in
 the broader community

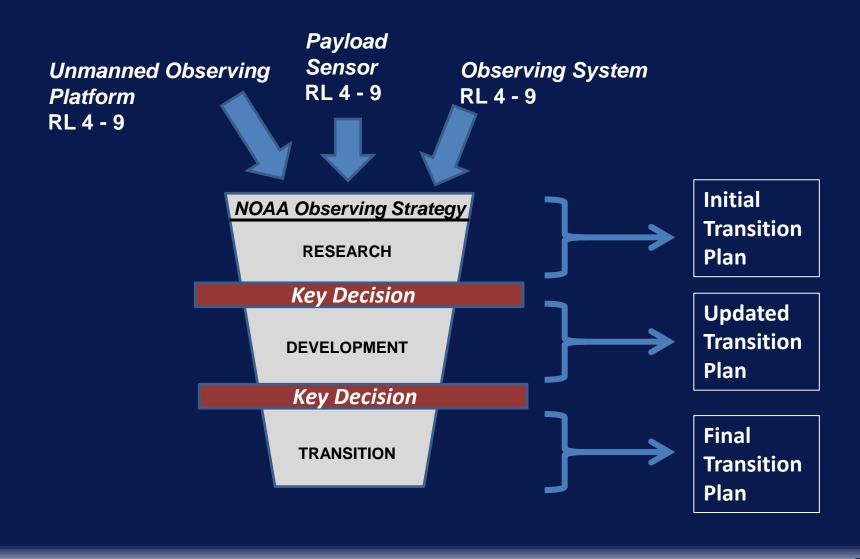
Relationship of Research, Development, and Transition to Operational Mission Goals

UAS Program Definitions Unmanned Observing Platform – unmanned aircraft or marine system with launch, recovery, communication, and ground control packages

• <u>Payload Sensor</u> – instrument capable of collecting observation from an observing platform

• **Observing System** - Payload, platform, data storage components working as a system to acquire an observation

Observing Strategy – application of a process or plan to use an observing system to acquire an observation


UAS Readiness Level

Readiness Level (RL)	UAS Platform	UAS Payload	UAS Observing System	UAS Observing Strategy
RL 1 Basic research with no particular application planned				
RL 2 Applied research directed toward specific application				
RL 3 Proof-of concept system or process developed				
RL 4 Successful proof-of-concept system or process validated in laboratory or experimental environment				
RL 5 Successful proof-of concept system or process validated in relevant environment				
RL 6 Successful prototype system or process demonstration in relevant or test environment				
RL 7 Successful prototype system process demonstration in operational environment				
RL 8 Finalized system or process operating as expected in user environment; user training completed; user acceptance				
RL 9 Finalized system or process operated routinely by user				

Critical Elements Needed to Mature a Complete Observing Strategy

Maturing the Readiness of a UAS Observing Strategy

Observing Strategies *Maturity versus Science Focus Area*

Readiness	High Impact Weather	Marine Monitoring	Polar Monitoring
Research	 Researching UAS Capabilities for Three Dimensional Profiling of the Severe- Weather – John Walker Validating UAS Weather Observations (Partnership) – Bruce Baker, ARL/OAR 	 National Estuarine Research Reserve Ecosystem Assessments with small UAS- Kirk waters/Nina Garfield/NOS Juvenile Salmon Habitat Characterization using small UAS- Curtis Roegner/NMFS Demonstrating UAS Capabilities in the Rim of the Pacific Exercise - Todd Jacobs/ NOS 	 Assessing UAS Capabilities during the Arctic Aerial Calibration Experiment: Cetacean and Pinniped Population Assessments - Robyn Angliss Researching UAS Shipboard Capabilities for Future Polar Applications- Trish Quinn Researching UAS capabilities during the Marginal Ice Zone Experiment (Partnership) - Tom Wagner / NASA
Development	 Lower Mississippi River Forecast Center and NERR Habitat Mapping and Restoration using fixed and rotary wing UAS – Robert Moorhead Sensing Hazards with Operational Unmanned Technology (SHOUT) Mission Concept – Jason Dunion SHOUT Cost and Operational Feasibility Study – Phil Kenul SHOUT Data Impact Study– Gary Wick 	 Demonstrating small UAS for Oil Spill Simulations and Environmental Response Management Application (ERMA) – Robb Wright 	 Developing UAS capabilities for Polar Applications (Partnership) US Coast Guard and AeroVironment collaboration – Jason Story/USCG and Brian Walsh/AeroVironment Balloon-Launched Glider UAS for Measuring Trace Gases - Jim Elkins
Transition	 Assimilation of Global Hawk/AVAPS data into EMC operational models - Vijay Tallapragada/ NWS Development of the Global Hawk Turbulence Sensor for Aircraft Safety – Ru-Shan Gao / OAR Observing System Simulation Experiment Analysis for Evaluating Impact of HALE Observations: Altug Aksoy/ OAR UAS Observations for Rapid Response Post Storm Damage Assessment (Partnership) – Michael Sporer/ NWS UAS Observations for Satellite Calibration: GOES-R Calibration (Partnership) - Frank Padula / NESDIS 	 National Marine Sanctuaries UAS applications – Todd Jacobs and Brendan Bray/NOS Optionally Piloted Aircraft for the GRAV-D Gravimetry Mission–Monica Youngman Coastal Mapping using small UAS – Mike Aslaksen/NOS Protected Resources Research with small UAS APH-22 for Large Whale Health Assessment: John Durban /NMFS Protected Species Research- Advancing APH-22 rotary wing applications for pinniped surveys- Kimberly Murray/NMFS 	 UAS Observations for Soot Transport, Absorption, and Decomposition Study (STADS) - Trish Quinn / OAR

QUALITY

Awards and Interagency Memberships

• Awards

- Robbie Hood (2013), Executive Excellence Award / American Indian Science and Engineering Society
- JC Coffey(2015), Member of the Year / Association for Unmanned Vehicle Systems International

Memberships

- Federal Advisory Board for Alliance for System Safety of UAS through Research (ASSURE) / FAA Center of Excellence for UAS Research
- NSF Center for Unmanned Aircraft Systems
- Interagency Coordinating Committee for Airborne Geoscience Research and Applications

Selected List of Invited Speaking Engagements

- January, 2016 American Meteorological Society 6th Conference on Transition of Research to Operations and 18th Symposium on Meteorological Observations and Measurements
- January, 2016 NASA/NOAA Press Event for El Nino Rapid Response Experiment
- February, 2016 Drones for Scientific Research Session of American Association for the Advancement of Science Annual Meeting
- March 2016 Office of the Federal Coordinator for Meteorology Tropical Cyclone Operations and Research Forum
- May, 2016 Women in Robotics, XPONENTIAL / Association for Unmanned Vehicle Systems International
- August, 2016 White House Office of Science and Technology Workshop on Drones and the Future of Aviation
- November, 2016 Women in Drones Panel of Commercial Unmanned Aircraft Vehicle Symposium
- December, 2016 UAS in Geosciences Session of American Geophysical Union Fall Meeting

Cooperative Research and Development Agreements (CRADAs)

Project	Collaborator	Year	Focus	Remarks
Puma-AE Spiral Development	AeroVironment	2012-17	Marine and Polar	Arctic and Antarctic Demonstrations
Multi-Mission Survey	Aurora Flight Sciences	2013-17	Marine	Medium Altitude Remote Sensing
NWS Multi-Mission	Prioria	2015-17	Weather	Low Altitude Observations
Shipboard Operations	Latitude Engineering	2016-17	Marine and Polar	Arctic Observations
Shipboard Operations	Precision	2015-17	Marine and Polar	Arctic Observations
Platform and Payload Integration	UAVSolutions	2015-17	Weather	Prototype Demonstrations

Small Business Innovation Research

SBIR	Focus	Status
Phase I-III SBIR: Gravimetry	Grav-D capture using UAS (Researcher –Aurora Flight Sciences)	Phase III - Commercialized
Phase I-II SBIR: Atmospheric and SST from Air-launched UAS	Atmospheric and SST from Air-launched UAS (Researcher: Piasecki Aircraft)	No Cost Extended for Phase II flight testing
Phase I FY17 NOAA UAS SBIR: Maritime and Arctic (MAS) Observations + VTOL (Proposed)	Targeted Autonomous In-situ Sensing and Rapid Response	Submissions due Jan 2017 pending selection

Advancing Operational Readiness of High Altitude Dropsonde

2009-2010

NOAA/NSF develop Global Hawk dropsonde system

Concept in laboratory / relevant environment

2011

NOAA Winter Storms and Pacific Atmospheric Rivers (WISPAR)

First Global Hawk flights with dropsonde system

First Arctic Global Hawk flight

First dropsonde intercomparsion with NOAA G-IV

Results were published in peerreviewed publication

Prototype in relevant environment

2012 - 2014

NASA Hurricane and Severe Storm Sentinel (HS3) /2011 -2015

Dropsonde and remote sensing payload

Real-time dropsonde delivery to NOAA Global Forecast System and National Hurricane Center

Second dropsonde intercomparsion with NOAA G-IV

Prototype in relevant / operational environment

2014 – 2017

SENSING HAZARDS WITH OPERATIONAL UNMANNED TECHNOLOGY (SHOUT) TO MITIGATE THE RISK OF SATELLITE OBSERVING GAPS

NOAA Sensing Hazards with Operational Unmanned Technology (SHOUT)

Flights over Atlantic, Gulf of Mexico, Pacific storms

12 missions, 288 flight hours, 738 dropsondes in 2016

Real-time dropsonde and remote sensing data delivery assimilate into NOAA Hurricane Weather Research Forecast Model

Prototype / System in operational environment

RELEVANCE

Linkage of UAS Program Activities to NOAA Environmental Data Enterprise Goal

Environmental Data

Key question – What is the best observing system to meet NOAA's mission?

R&D Objective-Quantitative methodologies for assessing impacts of current and candidate observing systems to NOAA mission?

R&D Objective – Improved accuracy, coverage, resolution and effectiveness and cost of observation systems

UAS Program – Data impact, cost effectiveness, and operational feasibilities studies

Environmental Data


Key Question – How can we best use current and emerging environmental data?

R&D Objective – Exploit emerging data types and observing capabilities to satisfy NOAA's observing requirement

5-year Aim – Transition UAS and autonomous underwater vehicles into NOAA'S operational observing system

UAS Program – Research, development, and transition activities

Linkage of UAS Program Activities to NOAA to Weather, Ocean, Coastal Goals

PERFORMANCE

Updated NOAA UAS Strategic Vision and Roles (FY15 – FY17)

Vision

Program Roles

UAS observations will become an essential component of the NOAA observing system by augmenting critical observations from satellites, ships, aircraft, balloons, and surfacebased sensors to contribute to the environmental intelligence needed by our Nation and the world.

Serve as the NOAA subject matter experts for UAS technology and observations to provide a resource to support effective NOAA UAS investments and applications Assist with the research, development, demonstration, evaluation, and transition to application of selected UAS observing strategies that can provide significantly improved or more efficient observing capabilities or safer observing operations for the NOAA observing system

Project Selection

Project Sources

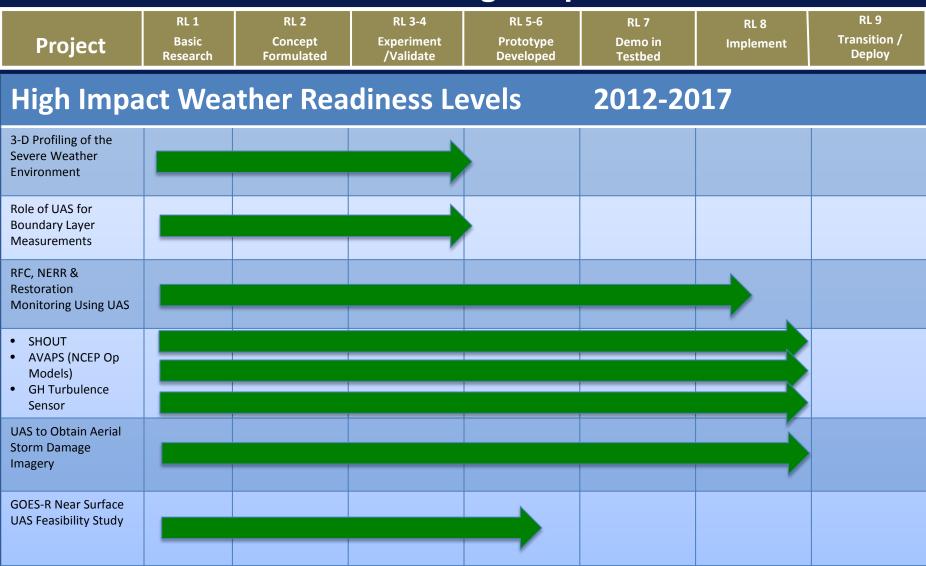
- Internal solicited or unsolicited proposals from NOAA scientists and cooperative institutes
- Federal agency partnership opportunities
- Cost sharing commitments to projects proposed to other federal agencies
- Small Business Innovation Research (SBIR) program
- Private industry Cooperative Research and Development Agreements (CRADAs)
- Specific congressional directives (e.g. Disaster Recovery Act of 2013)

Selection Criteria

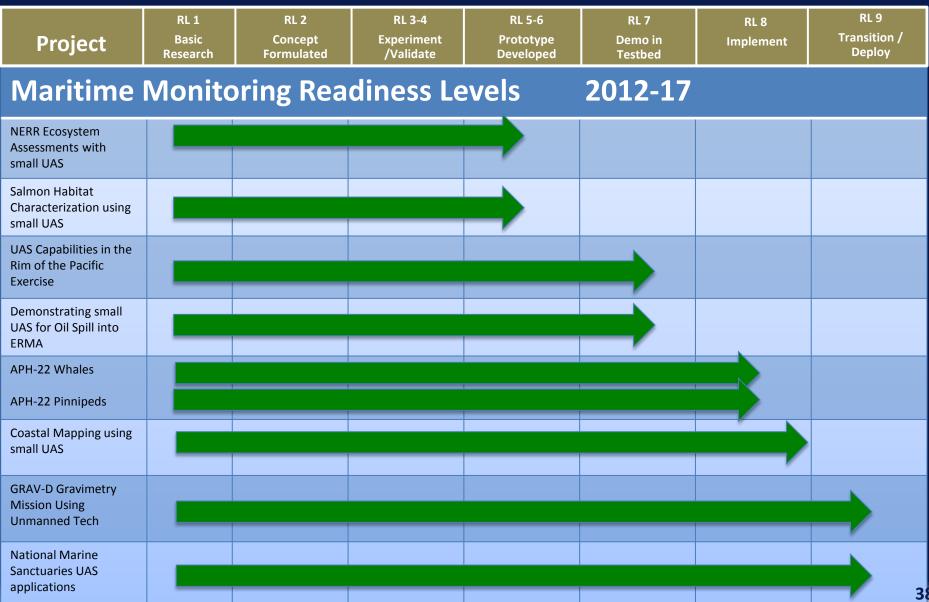
- Importance and relevance to NOAA mission
- Scientific merit
- Technology readiness and likelihood for transition
- Qualifications of project team
- Cost and cost sharing
- Project risk and mitigation plan
- Partnership opportunities

Project Management of Field Missions

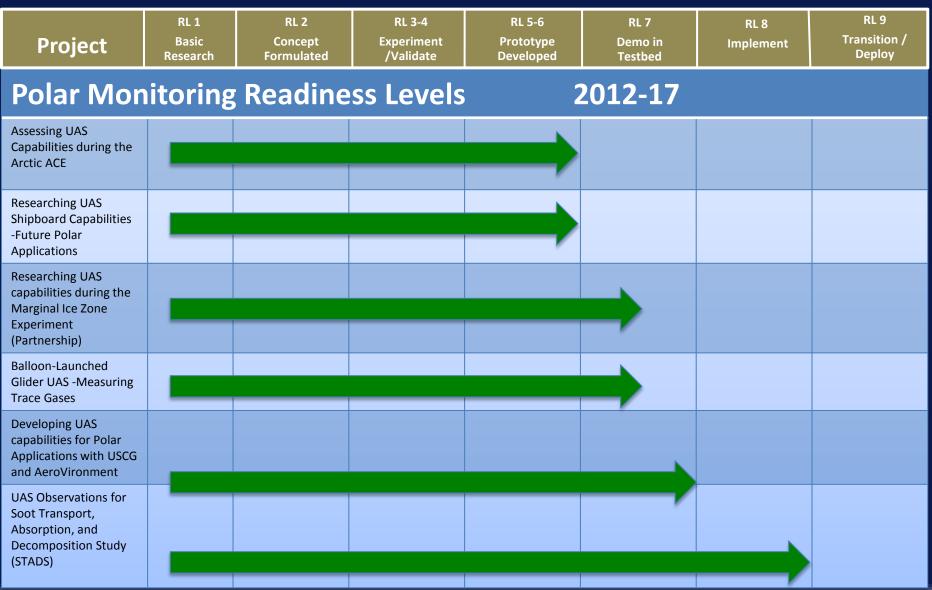
Project Plan, Initial Transition Plan, Mission Concept Review


Monthly Reports and Annual Quad Charts

Engineering Reviews, as needed


Mission Readiness Review and Flight Safety Review (Aircraft Operations Center)

Post-Mission Review, Final Project Report, and Final Transition Plan


Observing Strategies Advancements to High Impact Weather

Observing Strategies Advancements to Maritime Monitoring

Observing Strategies Advancements to Polar Monitoring

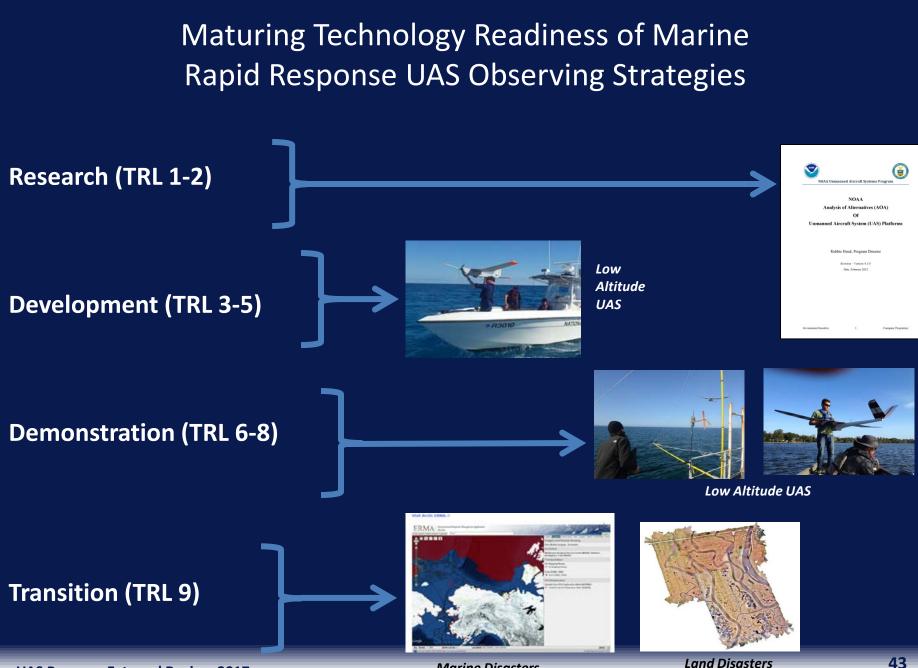
BACKUP SLIDES

UAS Program Science Focus Areas

High Impact Weather

• Can UAS observations enable improved forecasts, scientific understanding and decision support?

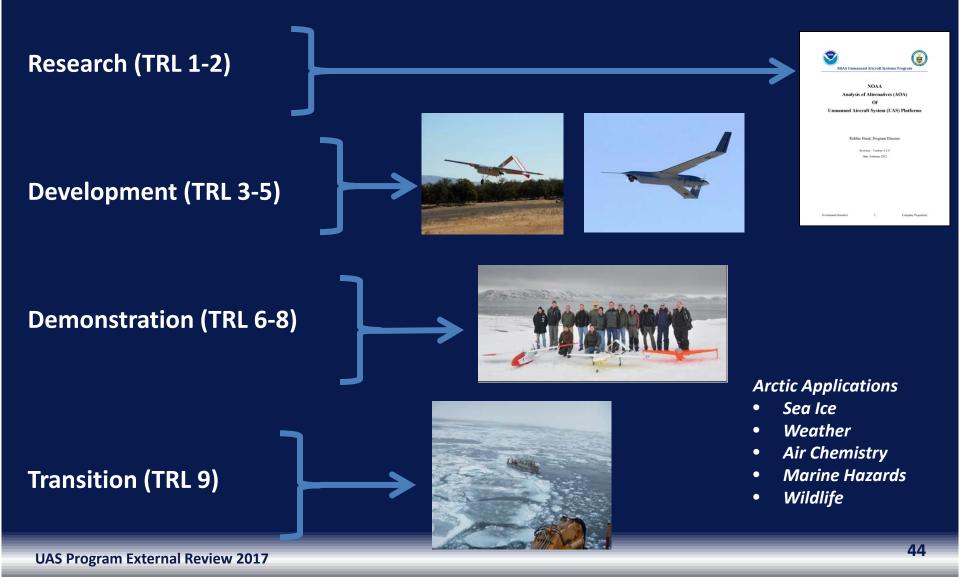

Marine


• Can UAS observations provide reliable, timely and affordable environmental intelligence information for resilient coastal communities and healthy oceans?

Polar

 Can UAS observations contribute to NOAA'S Arctic vision and strategy?

Maturing Technology Readiness of High Impact Weather UAS Observing Strategies



UAS Program External Review 2017

Marine Disasters

Maturing Technology Readiness of Polar UAS Observing Strategies

