Sensing Hazards with Operational Unmanned Technology (SHOUT) Mission Concept

Jason P. Dunion University of Miami/CIMAS – NOAA/AOML/HRD March 8, 2017

SHOUT: Overarching Goal

Demonstrate and test prototype UAS concept of operations that could be used to mitigate the risk of diminished high impact weather forecasts and warnings in the case of polar-orbiting satellite observing gaps

NOAA's Weather-Ready Nation:

• optimize UAS data collection to improve forecasts of high impact weather events

SHOUT Objectives (Cont'd)

Objective 1: UAS Data Impact

- Observing System Experiments (OSE) using data from UAS field missions
- Utilize adaptive aircraft sampling strategies for improving real-time TC track and intensity forecasts
 - > 80 member HWRF/50 member ECMWF model ensembles
- Observing System Simulation Experiments (OSSE) using simulated UAS data

SHOUT Objectives (Cont'd)

Objective 2: Improved Understanding of Tropical Cyclones Processes

 Investigate processes in the TC inner core (e.g. warm core), boundary layer, diurnal cycle, and upper-level environment (e.g. cirrus canopy) that impact intensity change and structure

SHOUT Objectives (Cont'd)

Objective 3: Cost-Operational Benefit Analysis

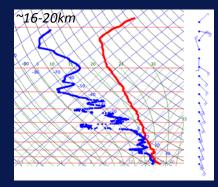
- Quantify the cost and operational benefit of UAS observing technology for high impact weather prediction
- Conduct detailed analyses of life-cycle operational costs and constraints versus scientific benefit.

NOAA SHOUT Project Assets Global Hawk Aircraft

- Flight Level: ~55-65,000 ft
- Duration: ~24 hr
- Flight Frequency
 - 1x per 48 hr (every other day)
 - 3 consecutive flights
 - 7 day max >> hard down
- Range: 8-10,000 nm
- Deployment Sites
 - NASA Wallops Flight Facility (Wallops Island, VA)
 - NASA Armstrong Flight Research Facility (Edwards AFB, CA)
- Payload: 1,500+ lbs
- Global Hawk Operations Center (GHOC) mission support
 - 3 shifts per mission

Global Hawk Instrumentation (2015-2016)

Airborne Vertical Atmospheric Profiling System (AVAPS)


PI: Terry Hock, NCAR / Gary Wick, NOAA

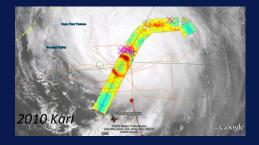
Measurements:

- temperature, pressure, wind, humidity (vertical profiles)
- 90 dropsondes per flight

Resolution:

• ~2.5 m (winds), ~5 m (PTH)

High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR)


PI: Dr. Bjorn Lambrigtsen, JPL

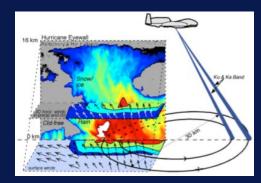
Measurements:

- Microwave AMSU-like sounder;
- 25 spectral channels in 3 bands;(50-60 GHz, 118 GHz, and 183 GHz)
- 3-D distribution of temperature, water vapor, & cloud liquid water;

Resolution:

- 2 km vertical; 2 km horizontal (nadir)
- 40 km wide swath

High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)


PI: Dr. Gerald Heymsfield, NASA GSFC

Measurements:

- Dual-frequency (Ka- & Ku-band), dual beam, conical scanning Doppler radar
- 3-D winds, ocean vector winds, and precipitation;

Resolution:

• 60 m vertical, 1 km horizontal;

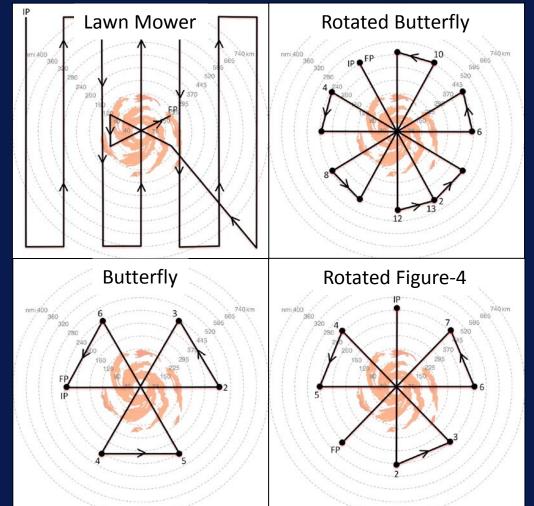
NOAA SHOUT Project Assets Personnel, Tools, and Collaborations

- NOAA Hurricane Research Division forecasting team, federal/university/ONR TCI mission scientist team
- Numerical simulations to optimize sampling strategies & observation types that will improve TC forecasts (OSEs, OSSEs, ensemble-based targeted observations)
- HRD aircraft track design software, real-time mission monitoring (NASA MTS)
- Real-time GPS dropsonde processing and transmission to the Global Telecommunication System (GTS)
- Collaborations: NOAA IFEX, NOAA ESRL, ONR TCI, NAWDEX

Global Hawk Flight Modules

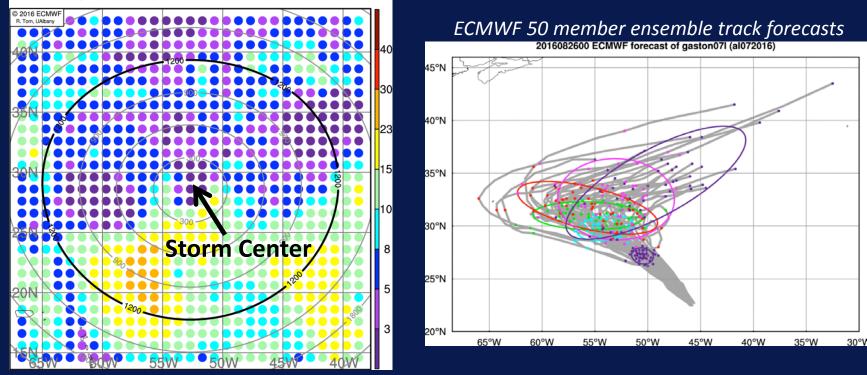
On-Station Time

- ~14.0 hr (3.25 hr/6.5/3.0 hr)
- Small: R=0 to 120 nm (220 km)
- Large: R=0 to 240 nm (450 km)


Advantages

- Radial/Azimuthal sampling
- 2 Inner core snapshots
- Radial gradients
- 9 center crossings
- Inner core & environ sampling
- HAMSR & HIWRAP >> inner core

Disadvantages


- Far field sampling limited
- Navigating center crossings

Butterfly (small-large-small)

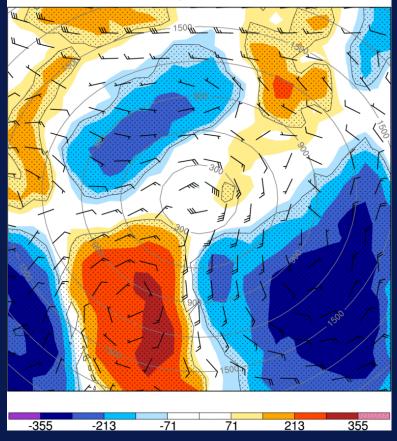
Adaptive Aircraft Sampling (GPS Dropsondes) 2016 Hurricane Gaston

Dropsonde impact at 2016082712 (F036)

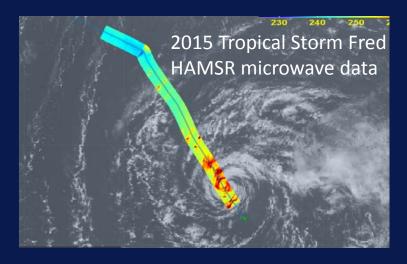


- Analyses based on 80 (50) member HWRF (ECMWF) ensemble forecasts
- (Left) Hypothetical reduction in model uncertainty due to assimilating GPS dropsonde observations at that location
- (Left) Warmer colors >> favorable regions for dropsonde sampling

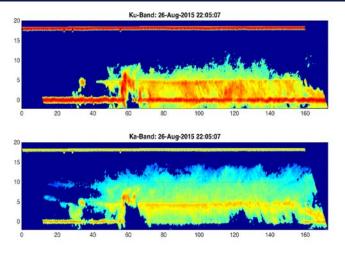
Adaptive Aircraft Sampling (GPS Dropsondes)

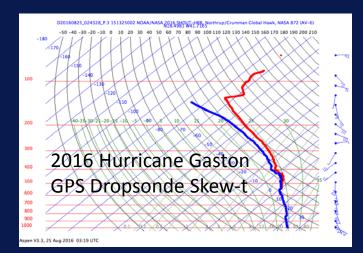

Forecast Uncertainty

F036 Average Meridional Wind


Sensitivity

F036 Average Meridional Wind




- Forecast Uncertainty: where is there uncertainty in the model forecast?
- Sensitivity: where is the model more vs less sensitive to observations?
- Where do you sample and will the model be sensitive to your added data?

Real-Time Data Products to the National Hurricane Center

2015 TS Erika: HIWRAP Radar Cross-Section

2016 Hurricane Gaston GPS Dropsonde WMO Message

000											
UZNT1	3 KWBC	250323	1								
XXAA	75031	99185	70417	04181	99995	24600	12069	00543	11111	11111	
92640	21400	14584	85372	17800	15585	70023	11000	16566	50576	02105	
17561	40751	12918	22537	30966	25731	24005	25095	36539	12022	20245	
50550	12033	15426	66964	15517	10665	735//	12021	88133	733//	19013	
88105	733//	10026	77999								
31313	09608	80243									
61616	NA872	WX07A	GASTO	11	OB 73	3					
62626 MBL WND 13080 AEV 33270 DLM WND 16046 994666 WL150 12577 08											
3 REL 1850N04172W 024327 SPG 1869N04179W 030132 =											
XXBB	75038	99185	70417	04181	00995	24600	11850	17800	22717	12200	
33428	07513	44402	12718	55327	21126	66257	34537	77185	54956	88139	
70966	99130	743//	11125	689//	22123	681//	33110	727//			
21212	00995	12069	11992	12568	22984	13082	33973	13076	44964	13085	
55953	13584	66936	14075	77928	14084	88850	15585	99513	17563	11436	
18530	22425	22024	33420	23027	44387	23539	55346	23025	66339	21022	
77318	21011	88289	00000	99272	10510	11255	12020	22243	10528	33227	
11034	44209	11034	55186	14028	66163	14528	77152	14518	88134	19013	
99130	18012	11127	20508	22119	12016	33116	11022	44110	12017	55104	
10027											
31313	09608	80243									
61616	NA872	WX07A	GASTO	11	OB 73	3					
62626	62626 MBL WND 13080 AEV 33270 DLM WND 16046 994666 WL150 12577 08										
3 REL	REL 1850N04172W 024327 5PG 1869N04179W 030132 =										
XXCC	75037	99185	70417	04181	70877	731//	11033	88999	77999		
31313	09608	80243									
	10190										
61616	NA872	WX07A	GASTO	11	OB 73	3					
62626 MBL WND 13080 AEV 33270 DLM WND 16046 994666 WL150 12577 08											
3 REL	1850N										
XXDD					11898						
	11946							14510	55801	10505	
	06010		08523	88711	11536	99666	09028				
	09608										
	10190										
	NA872										
62626 MBL WND 13080 AEV 33270 DLM WND 16046 994666 WL150 12577 08											
3 REL	3 REL 1850N04172W 024327 SPG 1869N04179W 030132 =										

Real-Time Data Products NOAA NHC Utilization of SHOUT Data by Forecasters

2016 Hurricane Gaston

NOAA NHC Tropical Cyclone Report

25 Aug: "Operationally, Gaston was analyzed as a 60-kt tropical storm until dropwindsonde data from a NASA Global Hawk unmanned aircraft mission indicated that the tropical cyclone was a hurricane."

2016 Tropical Depression Nine (Hurricane Hermine mission)

NOAA NHC Discussion #7

30 Aug: "A dropsonde from the Global Hawk reported 33 kt surface winds, but the meanlayer wind over the lowest 150 m support winds closer to 30 kt. A very recent center drop from the unmanned aircraft indicate that the minimum pressure is 1003 mb."

2016 Post-Tropical Cyclone Matthew

NOAA NHC Discussion #47

O9 Oct: "Dropsonde data from a NASA Global Hawk mission into Matthew today indicate that the post-tropical cyclone has not weakened. The observations continue to show a band of 60-65 kt winds to the SW and west of the center."

2016 NOAA SHOUT HRR Mission Science Schedule

Science Operations:

- 0730 EDT: daily cage meeting (shift-1 mission scientists & pilots)
- 0830 EDT: daily SHOUT coordination call
 - Wallops local weather (NASA Wallops-led Mo-Fr; SHOUT-led Sa-Su)
 - MS shift-1: lead with a 5-10 min weather update)
 - Discussion of flight plans and strategies
- 1000 EDT: Coordination call with NOAA IFEX and NAWDEX
- 1100 EDT: Coordination with pilots
- 1200 EDT: HRD map discussion (Mo-Fr); SHOUT-led map discussion (Sa-Su)

SHOUT Field Campaigns: Hurricanes 2015


- 3 missions flown
 - Tropical Storm Erika (2) and Tropical Storm Fred (1)
- First NOAA-operational assimilation of Global Hawk dropsondes
- Refinement of real-time data delivery
- Demonstration of forecast sensitivity targeting (HWRF ensemble)
- Demonstration of bi-coastal operations

SHOUT Field Campaigns: El Nino Rapid Response 2016

- Demonstrated ability to plan and deploy on short notice
 - Reduced in-field staffing
- 3 missions flown
 - Atmospheric river impacts in Pacific NW (12-13 Feb)
 - Trough interactions and cutoff low in advance of southern California precipitation (15-16 Feb)
 - Dual impacts in Alaska and SE US; AF C-130 & G-IV coordination (15-16 Feb)
- Further advances to real-time data delivery

SHOUT Field Campaigns: Hurricane Rapid Response 2016

• 9 missions flown

- Gaston (2), Hermine (2), Karl (2) and Matthew (3)
- Initial NASA AFRC-based followed by a deployment to NASA WFF
- Shift to operational type demonstration
 - Deploy aircraft and science teams on demand
 - Increased reliance on offsite staffing (e.g. remote mission scientists)
- Collaborations with the NOAA IFEX and European NAWDEX field programs and the ONR TCI science team

Conclusions

- The NOAA UAS Program is evaluating the potential for unmanned aircraft to positively influence forecasts of high-impact weather events
- Three successful field deployments completed from 2015-2016
- Studies already underway demonstrating positive forecast impact from Global Hawk data
- Streamlined field operations have demonstrated operational applications for UAS platforms like the Global Hawk