

Sensing Hazards with Operational Unmanned Technology (SHOUT)

Dr. Gary Matlock Deputy Assistant Administrator for Science NOAA/OAR

NOAA Observing Systems Council | 24 January 2018

Project Goal and Objectives

Overall Goal

Demonstrate and test prototype Unmanned Aircraft Systems (UAS) concept of operations that could be used to mitigate the risk of diminished high impact weather forecasts and warnings in the case of polar-orbiting satellite observing gaps

Objectives

Evaluate data impact, affordability, and operational feasibility of UAS operations

Comparison of Joint Polar Satellite System (JPSS) and Aircraft Sensors

JPSS Sensor	JPSS Observation	Aircraft Sensor	Aircraft Observation	Aircraft Integration History
Advanced Technology Microwave Sounder (ATMS)	Remotely sensed atmospheric temperature and moisture profiles in clouds	High Altitude Monolithic microwave integrated circuit Sounding Radiometer (HAMSR) Airborne Vertical	Remotely sensed atmospheric temperature and moisture profiles in clouds	NASA Global Hawk NASA ER-2 NASA Global Hawk
		Airborne Vertical Atmospheric Profiling System (AVAPS)	In situ atmospheric temperature, moisture, wind speed and wind direction profiles	NCAR Gulfstream 5
Cross-track Infrared Sounder (CrIS)	Remotely sensed atmospheric temperature and moisture profiles in clear air	Scanning High-resolution Interferometer Sounder (S-HIS)	Remotely sensed atmospheric temperature and moisture profiles in clear air	NASA Global Hawk NASA ER-2 NASA DC-8
		Airborne Vertical Atmospheric Profiling System (AVAPS)	In situ atmospheric temperature, moisture, wind speed and wind direction profiles	NASA Global Hawk NCAR Gulfstream 5

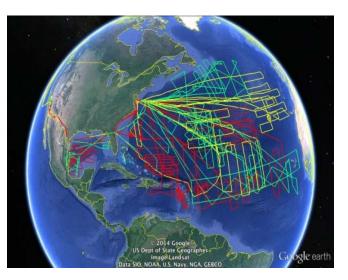
NASA Global Hawk Unmanned Aircraft System (UAS)

Flight Level: ~ 55,000-63,000 ft

Duration: ~26 hr

Range: ~11,000 nm

Payload: ~1,500+ lbs


Deployment Sites*:

West Coast - NASA Armstrong Flight Research Center (Edwards AFB)

East Coast - NASA Wallops Flight Facility (Wallops Island, VA)

*Mobile Ground Control Station can be deployed at any feasible runway location and has been demonstrated at Edwards AFB, Wallops FF, and Andersen AFB, Guam.

Data Impact

Change (%) in NWS Hurricane Weather Research and Forecasting Model Prediction Skill due to Global Hawk Dropsondes

(green = improvement, red = degradation)

Forecast period	Without Satellite With Global Hawk Dropsondes		With Satellite With Global Hawk Dropsondes	
	Track	Intensity	Track	Intensity
12 hour	0	-5	-11	+2
24 hour (1 day)	+12	+10	-3	0
36 hour	+22	+10	-2	+2
48 hour (2 day)	+14	+15	+1	0
60 hour	+20	+45	+3	+6
72 hour (3 day)	+18	-20	+5	+14
84 hour	+22	-5	+6	+10
96 hour (4 day)	+4	-5	+8	+8

Change (%) in NWS Global Forecasting System Predictions for Atlantic Tropical Cyclones during 2014-2016 due to Global Hawk Dropsondes

Forecast Period	With Satellite With Global Hawk dropsondes
	Track
12 hour	0
24 hour (1 day)	+1
36 hour	0
48 hour (2 day)	+7
60 hour	+12
72 hour (3 day)	+16
84 hour	+13
96 hour (4 day)	+14
108 hour	+11
120 hour (5 day)	+7

Affordability

Daily and Per Flight Hour Global Hawk Operational Rates

	Home Base Operations		Deployed Operations	
	Daily cost	Flight hour cost	Daily cost	Flight hour cost
Global Hawk Aircraft	\$15.1K	\$4.3 K	\$23.7K	\$4.6K
Mission Science and Payload		\$4.9K		\$4.9K
Information Management		\$1.4K		\$1.4K

Notes:

- Costs based on historical NOAA costs from SHOUT Program.
- Future rates will vary due to basing location, staffing model, and status of the NASA/Northrop Grumman partnership.
- Standard Aircraft Program Cost Calculated Based on Office of Management Budget Circular No. A-126

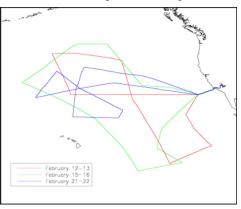
2016 SHOUT Hurricane Rapid Response NOAA Total Costs

Category	Cost (Deployment from WFF & AFRC)
Global Hawk Aircraft Operations	\$2.953K
Mission Science and Payload Support	\$1.163K
Information Management	\$0.329K
Total	\$4.445K

2016 HRR Totals:

- ✤ Flight Hours Total: 239 hrs
- Dropsondes Total: 648
- Flight Operations: 10 Weeks

Operational Feasibility

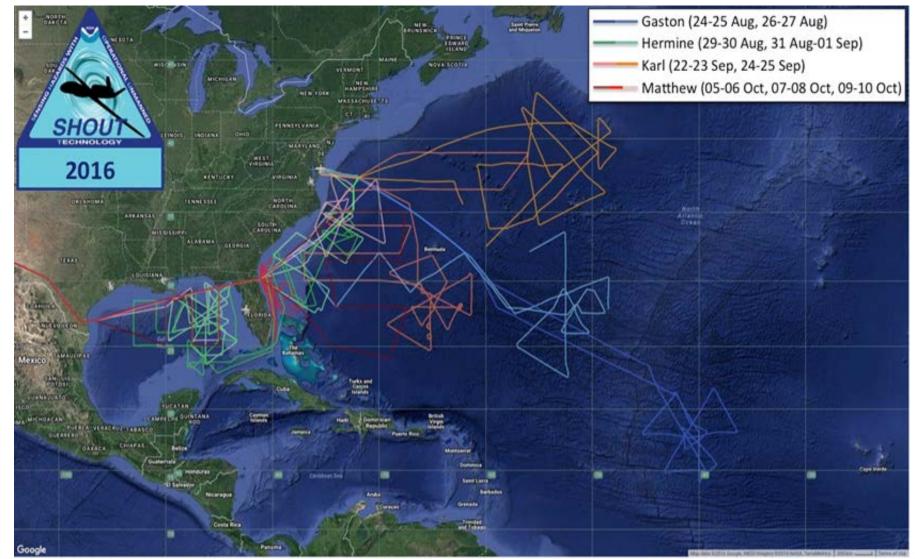


2016 Operational Demonstration of Flight Capabilities

- Rapid response: 2016 El Nino and Hurricane Rapid Response
- Bi-coastal operations
- 24-hour flights releasing more than 80 dropsondes per flight
- Reduced on-site staffing for scientists and payload personnel
- Increased use of remote access for planning discussions
- Saved \$125K in travel funding while doubling the number of missions

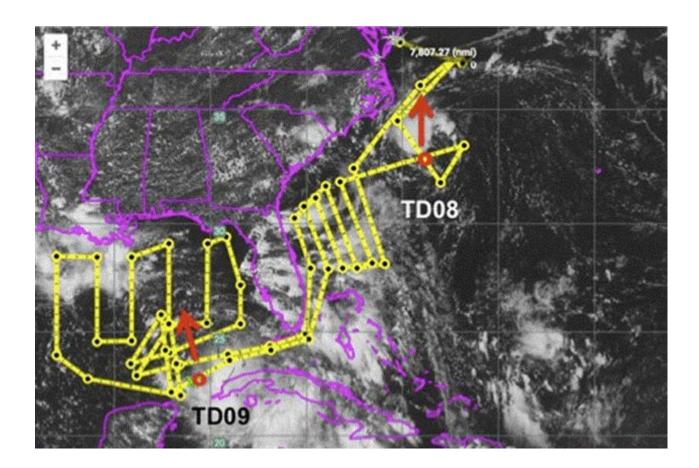
El Nino Rapid Response

Global Hawk Flights 2016 SHOUT HRR



Dates (2016)	Target	Duration (hours)	# Sondes Deployed
24-25 August	Gaston	23.9	85
26-27August	Gaston	23.8	55
29-30 August	Hermine	23.8	90
31 August – 1 September	Hermine	22.8	87
22-23 September	Karl	24.0	82
24-25 September	Karl	22.8	81
5-6 October	Matthew	24.7	62
7-8 October	Matthew	23.7	43
9-10 October	Matthew	24.8	63

Global Hawk Flight Tracks 2016 SHOUT HRR



SHOUT 2016 3rd Science Flight Over TD 8 & TD 9

NASA/NOAA Global Hawk concludes 24 hour mission after dropping a record 90 sondes supplying real-time data to the National Hurricane Center.

Project Outcome

This study demonstrates high altitude long endurance UAS observations are feasible, affordable, and provide positive scientific impact as a risk mitigation option to maintain weather forecast skill for high impact storms at sea when a major satellite failure occurs.

Additional Project Benefits

Change (%) in NWS Global Forecasting System Predictions for Pacific Tropical Cyclones during 2016 due to Atlantic Global Hawk Dropsondes

Forecast Period	With Satellite With Global Hawk Dropsondes		
	Eastern Pacific	Western Pacific	
12 hour	-4	0	
24 hour (1 day)	-3	6	
36 hour	-2	9	
48 hour (2 day)	0	6	
60 hour	3	10	
72 hour (3 day)	6	12	
84 hour	12	12	
96 hour (4 day)	16	12	
108 hour	10	10	
120 hour (5 day)	6	9	

Initial Transition from Research to Operations

Global Hawk Dropsonde Information as Data of Opportunity

- NWS National Hurricane Center Forecasters have used real-time Global Hawk dropsonde information for tropical cyclone intensity assessments when data are available
- NWS Environmental Modeling Center will assimilate Global Hawk dropsonde data into operational Global Forecasting System and Hurricane Weather Research and Forecasting models when data are available

Future of High Altitude Long Endurance Observing Capability

NOAA/NASA partnership has been successful in demonstrating this observing capability for NOAA data acquisition and is available for future utilization and transition.

Other Project Benefits

- Increased the reliability of automated Advanced Vertical Atmospheric Profiling System (AVAPS) dropsonde system with new increased sampling rate
- Collected and archived new wealth of tropical cyclone research- quality data
- Gained NOAA expertise in high altitude long endurance UAS operations with OAR, OMAO and NESDIS
- Developed a process for evaluating new observations that could be a model for similar studies conducted for the Weather Research and Forecasting Innovation Act

Acknowledgments

Internal Partners

Offices: OAR, OMAO, NWS, NESDIS

OAR Laboratories:

Atlantic Oceanic and Meteorological Laboratory (AOML) Earth System Research Laboratory (ESRL)

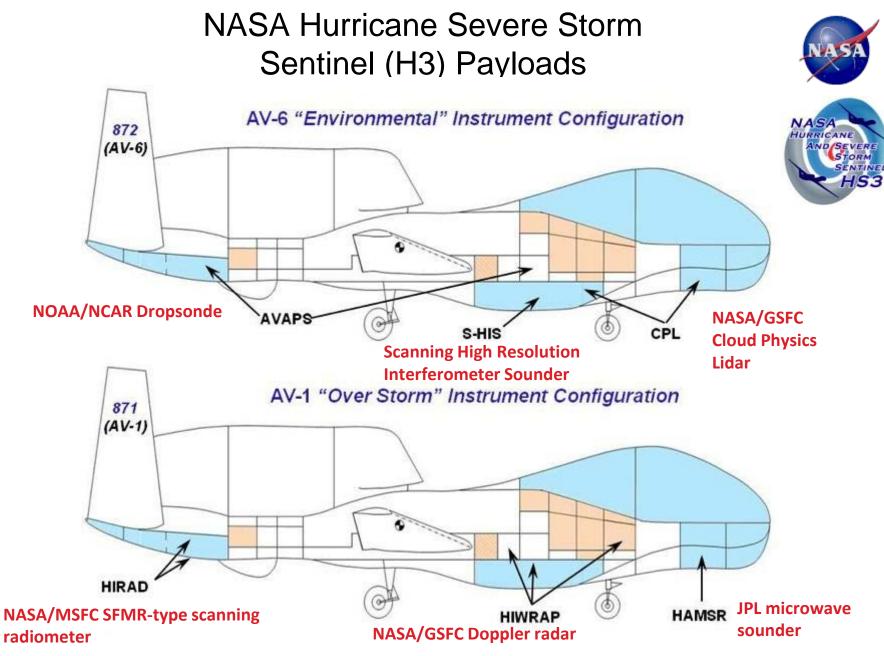
Cooperative Institutes:

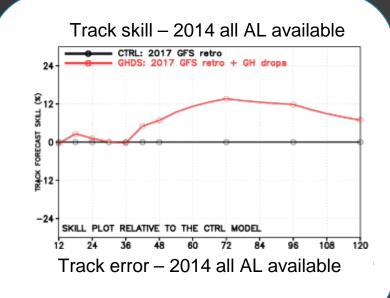
Cooperative Institute for Marine and Atmospheric Studies (CIMAS) Cooperative Institute for Meteorological Satellite Studies (CIMSS) Cooperative Institute for Research in Environmental Studies (CIRES) Cooperative Institute for Research in the Atmosphere (CIRA)

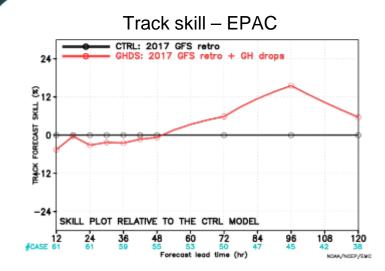
External Partners

National Aeronautics and Space Administration National Science Foundation Northrop Grumman US Navy

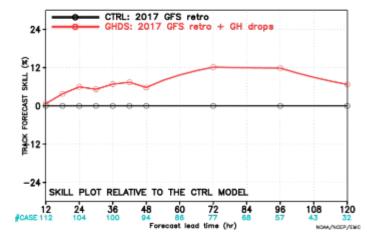
Questions and Feedback




Backup Slides

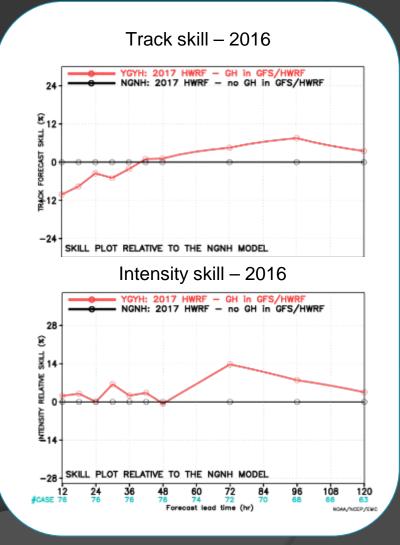

NWS Global Forecast System (GFS) Atlantic 2014-16

- Results prove GH is VERY useful for improving hurricane track forecasts
- Peak improvement about 15% at 72 h
- Statistically significant improvement at 72 and 96 h



Results courtesy Jason Sippel and Vijay Tallapragada, NOAA/NCEP/EMC

Results: GFS other basins 2016


Track skill – WPAC

Results courtesy Jason Sippel and Vijay Tallapragada, NOAA/NCEP/EMC

NWS Hurricane Weather Research and Forecast (HWRF) System Atlantic 2016

- Improvement in GFS has major impact on downstream models
- GFS retrospectives fed into new HWRF DA system
- Intensity improves by ~15% at 72 h

