Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

The OAR ORTA UxSRTO is no longer operating.

For further information, please visit The Office of Marine and Aviation Operations (OMAO) Uncrewed Systems Program webpage.

Fusion of LiDAR and Hyperspectral Imagery to Monitor Wetland Restoration Benefiting Salmon

ARTICLE / FIGURES PROVIDED BY: DR. G. CURTIS ROEGNER, NOAA FISHERIES

Effective restoration of wetlands from anthropogenic stress is a critical research priority worldwide, and in the Pacific Northwest of the US there is a heightened relevance for supporting recovery of listed and endangered salmon. Wetland vegetation communities are especially important for shelter and as a source of invertebrate prey preferred by juvenile salmon during migration to the ocean. While many new restoration projects have commenced in recent years, often lacking is the means for evaluation of the restoration effectiveness. This evaluation includes quantification of the trajectory of physical systems and vegetation communities from initial states towards those more beneficial to desired outcomes (e.g. fish survival). Typical wetland/estuarine vegetation and topographic surveys are expensive, time-consuming, and restricted in spatial and temporal cover, difficulties that until now have limited evaluation of restoration trajectories toward recovery.

This project is supported by funding from the UAS Program Office, and includes a partnership between NOAA Fisheries, Pacific Northwest National Laboratories, RykaUAS, and the National Park Service, has developed a UAS for remote sensing of vegetation types using a 110-band imaging spectrometer (BaySpec OCI) flown on a DJI Matrice 600 hexacopter. We established a library of ground-truthed “spectral signatures” from wetland plant species and analytical routines allowing for output of categorized maps and statistical metrics. The next phase of the project entails integrating a LiDAR (RIEGL miniVUX-1UAV) instrument for determining topography-vegetation species relationships and to track landform changes as restoration projects evolve over time. Fusing the vegetation and topographic data offers a means for the rapid and comprehensive assessment of habitat metrics with minimal additional ground truthing, and provides methods to evaluate the effectiveness of management actions.

Fig 1. RykaUAS staff (Robert Erdt and Joe Aga) prepare to launch the imaging spectrometer over Karlson Marsh.
Fig 2. Carla Cole (National Park Service) with the DJI Matrice 600.
Fig 3. A categorized vegetation plot of Colewort Creek wetland, Lewis and Clark National Historical Park.
Fig 4. Remote sensing of vegetation at Colewort Creek wetland, Lewis and Clark National Historical Park.