Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

The OAR ORTA UxSRTO is no longer operating.

For further information, please visit The Office of Marine and Aviation Operations (OMAO) Uncrewed Systems Program webpage.

Seahunter Unmanned Aircraft System (UAS) Flights In Northern Alaska

Article Provided By: Janet Intrieri (OAR/ESRL/PSD)

This week collaboration between ESRL PSD researchers Gijs de Boer (CIRES), Janet IntrieriChristopher Cox (CIRES), and Jackson Osborn (CIRES), and the University of Alaska – Fairbanks Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) flight team resulted in extended operation of the SeaHunter unmanned aircraft system over the Arctic’s Beaufort Sea.  The aircraft, carrying the miniFlux payload developed jointly by NOAA PSD and the University of Colorado, set out on a mission from Kuparuk airport to 72.5⁰ N latitude to make important measurements of atmospheric winds and thermodynamic properties as well as map sea ice concentration and sea surface temperature.  These observations support development of understanding of the roles of the ocean and atmosphere in fall sea ice development.  This airborne activity, in conjunction with oceanic assets deployed as part of the U.S. Office of Naval Research Departmental Research Initiative Stratified Ocean Dynamics of the Arctic (SODA), (SODA), will help to shed light on upper oceanic stratification and its connection to winds and sea ice cover. This activity, supported by the NOAA UAS program office and the National Science Foundation, is continuing over the next two weeks as the sea ice continues its seasonal march towards the Alaskan coastline.

Fig 1. Seahunter Unmanned Aircraft System (UAS) Flights In Northern Alaska
Fig 2. The aircraft, carrying the miniFlux payload developed jointly by NOAA PSD and the University of Colorado, set out on a mission from Kuparuk airport to 72.5⁰ N latitude to make important measurements of atmospheric winds and thermodynamic properties as well as map sea ice concentration and sea surface temperature.

Credit for Photos: Jordan W. Murdock, Robert J. Edison