Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

August 19, 2019

Figure 1: The NightFOX remote sensing UAS system is loaded onto the launcher for sampling a prescribed burn in Boulder County

Nighttime Fire Observations eXperiment (NightFOX) Update

Biomass burning produces major impacts on local and regional air quality and potentially plays an interactive role in climate change. A capable small, fixed-wing unmanned aircraft system (sUAS) can serve as an ideal platform for measurements of biomass burning emissions, plume distribution, fire extent and perimeter, and supporting meteorological data, especially at night when manned aircraft typically do not operate. The NOAA UASPO-funded Nighttime Fire Observations eXperiment (NightFOX) project aims to develop and deploy a sUAS observation system utilizing two modular and easily exchangeable payloads. One payload will provide in situ measurements of CO2, CO and fine- and coarse-mode aerosol size distributions in biomass burning plumes for characterization of fire combustion efficiency and emissions. A filter sampler will collect bulk aerosol samples for off-line composition analysis. The second payload will be flown over the fire to make remote sensing measurements of fire perimeter and fire radiative power using visible and short-, mid-, and long-wavelength IR observations. The multi-spectral remote sensing data will be used to provide sub-pixel information for comparison with satellite fire observations, and along with measured meteorological parameters, will be used to inform, test, and improve the WRF-SFIRE fire-atmosphere model.

On 31 July 2019, the NightFOX remote sensing payload onboard a Black Swift Technologies S2 UAS was used to monitor a prescribed burn in Boulder County, CO. The experiment was very successful, producing a fire map and demonstrating the capability and usefulness of the system (see associated figures and video). For the next step we plan to deploy the system to make measurements over real wildfires in the western US in August and September 2019.

This project is funded by the NOAA UAS Program Office, and includes a partnership between NOAA ESRL/CSD and the University of Colorado Boulder.

Nighttime Fire Observations eXperiment (NightFOX) Update Read More »

Chequamegon Heterogenous Ecosystem Energy-Balance Study (CHEESEHEAD’19)

The NOAA Air Resources Laboratory (ARL) Atmospheric Turbulence and Diffusion Division (ATDD), supported by the UAS Program Office, is participating in the Chequamegon Heterogenous Ecosystem Energy-balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD'19) campaign near Park Falls, Wisconsin (Figure 1). The aim of CHEESEHEAD'19 is to study interactions and feedbacks between the land surface and atmosphere and to improve how these interactions are represented in weather and climate models.

During three week-long campaigns in July, August, and September 2019, NOAA ATDD is operating two small Unmanned Aircraft Systems (sUAS). ATDD is using a DJI S-1000 (Figure 2) to obtain in-situ temperature and moisture measurements, along with land surface temperature measurements from a downward-pointing infrared camera, in the vicinity of 30-m (100-ft) towers installed in the CHEESEHEAD domain by partners from the National Center for Atmospheric Research (NCAR) (Figure 3). These towers are instrumented with a myriad of instruments to sample different meteorological variables (e.g., temperature, moisture, and wind), as well as exchanges of heat and moisture between the land surface and overlying atmosphere. These tower measurements, combined with the sUAS measurements, are then used to estimate the variability in heat exchange in the region surrounding the tower. Within a ~ 500 x 500 m area surrounding the tower, there is significant variability in temperature, with differences on the order of 10 °C over this area (Figure 3).

In addition to the DJI S-1000, ATDD is also operating a Meteomatics SSE (Figure 4) during CHEESEHEAD. This platform is used for obtaining vertical profiles of temperature, moisture, and wind. In the example from the morning of 12 July, ATDD performed 4 flights adjacent to one of the NCAR meteorological towers. These flights show the growth and evolution of the atmospheric boundary layer (i.e., the lowest part of the atmosphere directly affected by the surface), as well as increase in near-surface moisture (Figure 5). During the August and September CHEESEHEAD campaigns, ATDD will fly the Meteomatics adjacent to the NOAA Global Monitoring Division (GMD) 447-m Park Falls tall tower, which is outfitted with an array of meteorological measurements at multiple heights, to evaluate wind speeds and wind directions derived from the Meteomatics.

Chequamegon Heterogenous Ecosystem Energy-Balance Study (CHEESEHEAD’19) Read More »